1+1=2的证明

 我来答
关关说教育
高粉答主

2020-12-23 · 教育的根是苦的,但其果实是甜的。
关关说教育
采纳数:1878 获赞数:92333

向TA提问 私信TA
展开全部

1+1=2的证明:

因为1+1的后继数是1的后继数的后继数,即3。

所以2的后继数是3。

根据皮亚诺公理:如果b、c都是自然数a的后继数,那么b=c;,可得:1+1=2。

皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

数学上,还有另一个非常有名的“(1+1)”,是著名的哥德巴赫猜想。尽管听起来很神秘,但题面并不费解,具备小学三年级的数学水平就就能理解其含义。

扩展资料:

数学上,还有另一个非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。

例如3+3=6;11+13=24。他试图证明自己的发现,却屡战屡败。1742年,无可奈何的哥德巴赫只好求助当时世界上最有权威的瑞士数学家欧拉,提出了自己的猜想。欧拉很快回信说,这个猜想肯定成立,但他无法证明。

有人立即对一个个大于6的偶数进行了验算,一直算到了330000000,结果都表明哥德巴赫猜想是对的,但就是不能证明。于是这道每个不小于6的偶数都是两素数之和[简称(1+1)]的猜想,就被称为“哥德巴赫猜想”,成为数学皇冠上一颗可望不可即的“明珠”。

吴绍坤1
2016-04-03 · TA获得超过1109个赞
知道小有建树答主
回答量:277
采纳率:100%
帮助的人:124万
展开全部
1+1=2源自哥德巴赫猜想
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题.18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破.直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积.如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立.
1920年,挪威的布朗(Brun)证明了 “9+9 ”.
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”.
1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”.
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”,“4+9 ”,“3+15 ”和“2+366 ”.
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”.
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”.
1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数.
1956年,中国的王元证明了 “3+4 ”.
1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”.
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”,中国的王元证明了“1+4 ”.
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”.
1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数.因为在素数中只有一个偶素数,那就是2.)].
其中“s + t ”问题是指:s个质数的乘积 与t个质数的乘积之和
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法.解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lirunhuixiao
2016-04-03 · TA获得超过1661个赞
知道小有建树答主
回答量:3408
采纳率:0%
帮助的人:1110万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式