三角形知道边长和底怎么求高求详解 谢谢
3个回答
展开全部
利用海伦公式算三角形面积,再用面积的两倍除以某一边长,即可求得对应该边上的高。
分析过程如下:
已知三角形三边a,b,c,则
(海伦公式)(p=(a+b+c)/2)
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
再根据S=1/2ah,可得h=2S/a。
由此可知高等于2、4。
简介
三角形(triangle)是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
展开全部
三角形(triangle)是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
利用海伦公式算三角形面积,再用面积的两倍除以某一边长,即可求得对应该边上的高。
分析过程如下:
已知三角形三边a,b,c,则
(海伦公式)(p=(a+b+c)/2)
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
再根据S=1/2ah,可得h=2S/a。
由此可知高等于2、4。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
利用海伦公式算三角形面积,再用面积的两倍除以某一边长,即可求得对应该边上的高。
分析过程如下:
已知三角形三边a,b,c,则
(海伦公式)(p=(a+b+c)/2)
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
再根据S=1/2ah,可得h=2S/a。
由此可知高等于2、4。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询