高精度计算的高精度加法

 我来答
EZIO718
2016-05-28 · TA获得超过155个赞
知道答主
回答量:97
采纳率:100%
帮助的人:16.9万
展开全部

高精度运算主要解决以下三个问题:
一、加数、减数、运算结果的输入和存储
运算因子超出了整型、实型能表示的范围,肯定不能直接用一个数的形式来表示。在Pascal中,能表示多个数的数据类型有两种:数组和字符串。
数组:每个数组元素存储1位(在优化时,这里是一个重点!),有多少位就需要多少个数组元素;用数组表示数的优点:每一位都是数的形式,可以直接加减;运算时非常方便。用数组表示数的缺点:数组不能直接输入;输入时每两位数之间必须有分隔符,不符合数值的输入习惯;
字符串:String型字符串的最大长度是255,可以表示255位。Ansistring型字符串长度不受限制。用字符串表示数的优点:能直接输入输出,输入时,每两位数之间不必分隔符,符合数值的输入习惯;用字符串表示数的缺点:字符串中的每一位是一个字符,不能直接进行运算,必须先将它转化为数值再进行运算;运算时非常不方便;
综合以上所述,对上面两种数据结构取长补短:用字符串读入数据,用数组存储数据:
var st:string;
x,y:array[0..255]of integer;{定义两个数组,X和Y,用来储存数}
i,j,l1,l2:integer;
begin
readln(st);
l1:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}
for i:=0 to 255 do x[i]:=0;{数组初始化,该句等价于‘fillchar(x,sizeof(x),o);’,即给一数组整体赋值,但运行速度快于用‘for’语句对数组中的每一个数赋值}
for i:=l1 downto 1 do
x[l1-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}
readln(st);
l2:=length(st);{------length(x),该函数是获取字符串X的长度,返回为整型}
for i:=0 to 255 do y[i]:=0;{数组初始化,该句等价于‘fillchar(y,sizeof(y),o);’}
for i:=l2 downto 1 do
y[l2-i+1]:=ord(st[i])-ord('0');{------这里是重点,把字符串转换为数值,储存在数组中}
对字符串转为数值原理补充:ord(x)-48,如果X='1',因为'1'的ASCLL码是49,所以减去48就等于1,间接地把字符转换为数值了,各位初手要好好体会.
二、运算过程
在往下看之前,大家先列竖式计算35+86。
注意的问题:
(1)运算顺序:两个数靠右对齐;从低位向高位运算;先计算低位再计算高位;
(2)运算规则:同一位的两个数相加再加上从低位来的进位,成为该位的和;这个和去掉向高位的进位就成为该位的值;如上例:3+8+1=12,向前一位进1,本位的值是2;可借助MOD、DIV运算完成这一步;
(3)最后一位的进位:如果完成两个数的相加后,进位位值不为0,则应添加一位;
(4)如果两个加数位数不一样多,则按位数多的一个进行计算;
if l1<l2 then l1:=l2;
for i:=1 to l1 do
begin
x[i]:=x[i]+y[i];
x[i+1]:=x[i+1]+x[i] div 10;
x[i]:=x[i] mod 10;
end;
三、结果的输出(这也是优化的一个重点)
按运算结果的实际位数输出
var st:string;
x,y:array[0..255]of integer;
i,j,l1,l2:integer;
begin
readln(st);
l1:=length(st);
for i:=0 to 255 do x[i]:=0;
for i:=l1 downto 1 do
x[l1-i+1]:=ord(st[i])-ord('0');
readln(st);
l2:=length(st);
for i:=0 to 255 do y[i]:=0;
for i:=l2 downto 1 do
y[l2-i+1]:=ord(st[i])-ord('0');
if l1<l2 then l1:=l2;
for i:=1 to l1 do
begin
x[i]:=x[i]+y[i];
x[i+1]:=x[i+1]+x[i] div 10;
x[i]:=x[i] mod 10;
end;
write('x+y=');
j:=255;
while x[j]=0 do j:=j-1;
for i:=j downto 1 do write(x[i]);
readln;
end.
四、优化:
以上的方法的有明显的缺点:
(1)浪费空间:一个整型变量(-32768~32767)只存放一位(0~9);
(2)浪费时间:一次加减只处理一位;
针对以上问题,我们做如下优化:一个数组元素存放四位数;(integer的最大范围是32767,5位的话可能导致出界)将标准数组改为紧缩数组。第一步的具体方法:
l:=length(s1);
k1:=260;
repeat {————有关字符串的知识}
s:=copy(s1,l-3,4);
val(s,a[k1],code);
k1:=k1-1;
s1:=copy(s1,1,l-4);
l:=l-4;
until l<=0;
k1:=k1+1;
而因为这个改进,算法要相应改变:
(1)运算时:不再逢十进位,而是逢万进位(mod 10000; div 10000);
(2)输出时:最高位直接输出,其余各位,要判断是否足够4位,不足部分要补0;例如:1,23,2345这样三段的数,输出时,应该是100232345而不是1232345。
改进后的算法:
var a,b:string; k,i,c,d:longint; e,z,y:array[0..255]of integer;  begin  readln(a);  readln(b);  if length(b)>length(a) then for i:=1 to length(b)-length(a) do  a:='0'+a  else for i:=1 to length(a)-length(b) do  b:='0'+b;  for i:=length(a) downto 1 do  begin  c:=ord(a[i])-48;  d:=ord(b[i])-48;  if c+d<10 then e[i]:=e[i]+c+d else begin e[i]:=e[i]+c+d-10;e[i-1]:=1; end;  end;  if e[0]=1 then k:=0 else k:=1;  for i:=k to length(a) do  write(e[i]);  end.
C++参考程序:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
char a1[100],b1[100];
int a[100],b[100],c[100],lena,lenb,lenc,i,x;
memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(c,0,sizeof(c)); gets(a1); gets(b1); //输入加数与被加数 lena=strlen(a1); lenb=strlen(b1); for (i=0;i<=lena-1;i++) a[lena-i]=a1[i]-48; //加数放入a数组   for (i=0;i<=lenb-1;i++) b[lenb-i]=b1[i]-48; //加数放入b数组 lenc =1; x=0; while (lenc <=lena||lenc <=lenb) {   c[lenc]=a[lenc]+b[lenc]+x; //两数相加   x=c[lenc]/10;   c[lenc]%=10; lenc++; } c[lenc]=x; if (c[lenc]==0) lenc--; //处理最高进位 for (i=lenc;i>=1;i--) cout<<c[i]; //输出结果 cout<<endl;
return 0; }

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式