展开全部
正弦定理
一
1. 5:3
2.根号3/3
3.2根号2
4.根号3/4
5由正弦定理可得:
a=2RsinA,b=2RsinB
∵acosA=bcosB
∴sinAcosA=sinBcosB
∴A与B互余
∴C=90°
三角形ABC是直角三角形
6.∵a/sinA=c/sinc
∴2/(根号2/2)=根号6/sinC
∴sinC=根号3/2
∴∠C=60°或120°
∴∠B=75°或15°
二
1.(根号3+1)/4
2. 60°或120°
3. 30°150°
4. 等腰
5. 100M
6. ②④(这题没做,临时猜的)
7. ∵a/sinA=b/sinB=c/sinC
∴tanA=tanB=TANC
∴A=B=C=60°
∴是等腰三角形
8.∵a/sinA=b/sinB=c/sinC=2R
∴R=1
∴a=2sinA,b=2sinB,c=2sinC
∴原式=[2(sinA+sinB+sinC)]/(sinA+sinB+sinC)
=2
三
1.60°
2.—2根号3
3由正弦定理得sinA=a/2r,sinB=b/2r,sinC=c/2r,cosC=(a²+b²-c²)/2ab
(a、b、c分别为A、B、C的对边,r为三角形的外接圆半径)
代入两个已知式得a/2r=b/2r *(a²+b²-c²)/2ab---①
(a/2r)²=(b/2r)²+(c/2r)²----------②
由①化简得b=c 由②化简得a²=b²+c²
所以该三角形为等腰直角三角形
4.解:(Ⅰ)由cosB=-5/13 ,得sinB=12/13 ,
由cosC=4/5,得sinC=3/5.
所以sinA=sin(B+C)=33/65
(Ⅱ)由S△ABC=33/2得1/2*AB*ACsinA=33/2,
∴AB*AC=65
∵AC=(AB*sinB)/sinC=20/13AB
∴AB=13/2
∴BC=11/2
余弦定理
一
1.根号7
2.120°
3.60°
4.1:根号3:2
5.由题意得∠B最大
∵cosB=(a^2+c^2-b^2)/2ac=1/8
∴是锐角三角形
6.∵cosB=(a^2+c^2-b^2)/2ac
∴c^2-8c+15=0
∴c=3或5
∴S△ABC=6根号3或10根号3
二
1.60°
2.6根号3
3.-1/7
4.120°
5.45°
6.1
7.设边长为x、y的两边所加角为60度。另一边长为z
1/2*sin60*xy=10√3->xy=40
x+y+z=20
z^2=x^2+y^2-2cos60xy
z^2=(20-x-y)^2=400+x^2+y^2-40x-40y+2xy
0=400-40x-40y+3xy
x+y=13
z=7
X=5,Y=8
8.令BC=a
三角形ABC中
cosB=(AB^2+a^2-AC^2)/2a*AB
=(a^2-33)/8a
三角形ABD中
cosB=(AB^2+BD^2-AD^2)/(2*AB*BD)
BD=BC/2=a/2
cosB=(15/4+a^2/4)/4a
(a^2-33)/8a=(15/4+a^2/4)/4a
(a^2-33)/2=15/4+a^2/4
2a^2-66=15+a^2
a^2=81
BC=a=9
三
1.2
2.根号3/3
3.60°或120°
4. √3sinA=2sinCsinA
因为sinA≠0,所以sinC=√3/2
因为锐角三角形,C=60度
S=0.5absinC=ab√3/4=3√2/2
ab=6
c^2=a^2+b^2-2abcosC
7=a^2+b^2-ab=a^2+b^2-6
a^2+b^2=13=(a+b)^2-2ab=(a+b)^2-12
(a+b)^2=25,a+b=5
只有这些
一
1. 5:3
2.根号3/3
3.2根号2
4.根号3/4
5由正弦定理可得:
a=2RsinA,b=2RsinB
∵acosA=bcosB
∴sinAcosA=sinBcosB
∴A与B互余
∴C=90°
三角形ABC是直角三角形
6.∵a/sinA=c/sinc
∴2/(根号2/2)=根号6/sinC
∴sinC=根号3/2
∴∠C=60°或120°
∴∠B=75°或15°
二
1.(根号3+1)/4
2. 60°或120°
3. 30°150°
4. 等腰
5. 100M
6. ②④(这题没做,临时猜的)
7. ∵a/sinA=b/sinB=c/sinC
∴tanA=tanB=TANC
∴A=B=C=60°
∴是等腰三角形
8.∵a/sinA=b/sinB=c/sinC=2R
∴R=1
∴a=2sinA,b=2sinB,c=2sinC
∴原式=[2(sinA+sinB+sinC)]/(sinA+sinB+sinC)
=2
三
1.60°
2.—2根号3
3由正弦定理得sinA=a/2r,sinB=b/2r,sinC=c/2r,cosC=(a²+b²-c²)/2ab
(a、b、c分别为A、B、C的对边,r为三角形的外接圆半径)
代入两个已知式得a/2r=b/2r *(a²+b²-c²)/2ab---①
(a/2r)²=(b/2r)²+(c/2r)²----------②
由①化简得b=c 由②化简得a²=b²+c²
所以该三角形为等腰直角三角形
4.解:(Ⅰ)由cosB=-5/13 ,得sinB=12/13 ,
由cosC=4/5,得sinC=3/5.
所以sinA=sin(B+C)=33/65
(Ⅱ)由S△ABC=33/2得1/2*AB*ACsinA=33/2,
∴AB*AC=65
∵AC=(AB*sinB)/sinC=20/13AB
∴AB=13/2
∴BC=11/2
余弦定理
一
1.根号7
2.120°
3.60°
4.1:根号3:2
5.由题意得∠B最大
∵cosB=(a^2+c^2-b^2)/2ac=1/8
∴是锐角三角形
6.∵cosB=(a^2+c^2-b^2)/2ac
∴c^2-8c+15=0
∴c=3或5
∴S△ABC=6根号3或10根号3
二
1.60°
2.6根号3
3.-1/7
4.120°
5.45°
6.1
7.设边长为x、y的两边所加角为60度。另一边长为z
1/2*sin60*xy=10√3->xy=40
x+y+z=20
z^2=x^2+y^2-2cos60xy
z^2=(20-x-y)^2=400+x^2+y^2-40x-40y+2xy
0=400-40x-40y+3xy
x+y=13
z=7
X=5,Y=8
8.令BC=a
三角形ABC中
cosB=(AB^2+a^2-AC^2)/2a*AB
=(a^2-33)/8a
三角形ABD中
cosB=(AB^2+BD^2-AD^2)/(2*AB*BD)
BD=BC/2=a/2
cosB=(15/4+a^2/4)/4a
(a^2-33)/8a=(15/4+a^2/4)/4a
(a^2-33)/2=15/4+a^2/4
2a^2-66=15+a^2
a^2=81
BC=a=9
三
1.2
2.根号3/3
3.60°或120°
4. √3sinA=2sinCsinA
因为sinA≠0,所以sinC=√3/2
因为锐角三角形,C=60度
S=0.5absinC=ab√3/4=3√2/2
ab=6
c^2=a^2+b^2-2abcosC
7=a^2+b^2-ab=a^2+b^2-6
a^2+b^2=13=(a+b)^2-2ab=(a+b)^2-12
(a+b)^2=25,a+b=5
只有这些
展开全部
^为根号
一.
1.5:3 2.^3/3 3.2^2 4.^3/4 5.等腰 6.75。
二.
1.(^3+1)/4 2.60。或120。 3.30。或150。 4.等腰 5.200/3 6.2 7.等边 8.2
三.
1.60。 2.错题 3.先用勾股定理,再用sinA=sin(B+C)证出B=C 4.(1)sinA=13/65
余弦定理
一.
1.^7 2.120。 3.60。 4.1:^3:2 5.锐角 6.太烦
二.
1.60。 2.6^3 3.--1/7 4.120。 5.45。 6.1 7.a=8,b=7,c=5或a=5,b=7,c=8 8.BC=9
三.
1.2 2.1/^3 3.60。或120。 4.(1).C=60。(2).a+b=5
综和应用1
一.
1.150。 2.--1/4 3.直角 4.(60。,90。) 5.c=^7,B为最大角,cosB>0,所以…… 6.50^13m
二.
1.^13 2.15^3/4 3.70 4.2^3 5.直角 6.45。 7.BC=10^3m,H=30m 8.1).60。
三.
1.90。 2.2^6 3.烦 4.烦
综和应用2
1.10。 2.相等 3.10^7 4.--2 5.等腰
二.
1.2^13 2.70/43 3.3或^3 4.20+20^3/3 5.1或2 6.45。 7.1).^7 (.2) (3)烦 8.1).45。 (2).16
三.
1.^6
2和3 烦
目前找到的只有这些
一.
1.5:3 2.^3/3 3.2^2 4.^3/4 5.等腰 6.75。
二.
1.(^3+1)/4 2.60。或120。 3.30。或150。 4.等腰 5.200/3 6.2 7.等边 8.2
三.
1.60。 2.错题 3.先用勾股定理,再用sinA=sin(B+C)证出B=C 4.(1)sinA=13/65
余弦定理
一.
1.^7 2.120。 3.60。 4.1:^3:2 5.锐角 6.太烦
二.
1.60。 2.6^3 3.--1/7 4.120。 5.45。 6.1 7.a=8,b=7,c=5或a=5,b=7,c=8 8.BC=9
三.
1.2 2.1/^3 3.60。或120。 4.(1).C=60。(2).a+b=5
综和应用1
一.
1.150。 2.--1/4 3.直角 4.(60。,90。) 5.c=^7,B为最大角,cosB>0,所以…… 6.50^13m
二.
1.^13 2.15^3/4 3.70 4.2^3 5.直角 6.45。 7.BC=10^3m,H=30m 8.1).60。
三.
1.90。 2.2^6 3.烦 4.烦
综和应用2
1.10。 2.相等 3.10^7 4.--2 5.等腰
二.
1.2^13 2.70/43 3.3或^3 4.20+20^3/3 5.1或2 6.45。 7.1).^7 (.2) (3)烦 8.1).45。 (2).16
三.
1.^6
2和3 烦
目前找到的只有这些
参考资料: http://zhidao.baidu.com/question/169048077.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没有
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询