已知数列{an}的前n项和为Sn,设数列{bn}满足bn=2(Sn+1−Sn)Sn−n(Sn+1+
2016-05-24
设等差数列{a[n]}的公差为d,则a[n+1]=a[1]+nd,S[n]=na[1]+(n(n-1)/2)d,
由b[n]=2(S[n+1]−S[n])S[n]−n(S[n+1]+S[n])(n∈(N^*)),得b[n]=2a[n+1]S[n]−n(2S[n]+a[n+1])
又由b[n]=0,得
2(a[1]+nd)[na[1]+(n(n-1)/2)d]−n[2na[1]+n(n-1)d+a[1]+nd]=0对一切n∈(N^*)都成立
即对一切n∈(N^*),
(dn+a[1])[d(n^2)+(2a[1]-d)n]−n(d(n^2)+2a[1]n+a[1])=0
(d^2)(n^3)+(2a[1]d-(d^2))(n^2)+a[1]d(n^2)+(2(a[1]^2)-a[1]d)n-d(n^3)-2a[1](n^2)-a[1]n=0
((d^2)-d)(n^3)+(3a[1]d-(d^2)-2a[1])(n^2)+(2(a[1]^2)-a[1]d-a[1])n=0(两边同除以n)
((d^2)-d)(n^2)+(3a[1]d-(d^2)-2a[1])n+2(a[1]^2)-a[1]d-a[1]=0
从而(d^2)-d=0,3a[1]d-(d^2)-2a[1]=0,2(a[1]^2)-a[1]d-a[1]=0
解得d=0,a[1]=0
或d=1,a[1]=1
经检验符合题意。所以{a[n]}的通项公式为a[n]=0或a[n]=n