2个回答
2010-07-29
展开全部
这道题可以利用Cauchy-Schwarz不等式做
[a/(b+2c)+b/(c+2a)+c/(a+2b)]*(3ab+3bc+3ac)
= [a/(b+2c)+b/(c+2a)+c/(a+2b)]*[a(b+2c)+b(c+2a)+c(a+2b)]
≥(a+b+c)^2
a/(b+2c)+b/(c+2a)+c/(a+2b)≥(a+b+c)^2/(3ab+3bc+3ac)
因为 (a+b+c)^2 ≥ 3ab+3bc+3ac 所以
a/(b+2c)+b/(c+2a)+c/(a+2b)≥1,等号当且仅当 a=b=c时成立
如果你不熟悉Cauchy-Schwarz不等式, 通分化简也可以证,就是计算繁琐。
[a/(b+2c)+b/(c+2a)+c/(a+2b)]*(3ab+3bc+3ac)
= [a/(b+2c)+b/(c+2a)+c/(a+2b)]*[a(b+2c)+b(c+2a)+c(a+2b)]
≥(a+b+c)^2
a/(b+2c)+b/(c+2a)+c/(a+2b)≥(a+b+c)^2/(3ab+3bc+3ac)
因为 (a+b+c)^2 ≥ 3ab+3bc+3ac 所以
a/(b+2c)+b/(c+2a)+c/(a+2b)≥1,等号当且仅当 a=b=c时成立
如果你不熟悉Cauchy-Schwarz不等式, 通分化简也可以证,就是计算繁琐。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询