一道较难的数学题
y=5-(2/(n+1))-(2/(n+2))n为大于1的正整数求证:2n<y<2n+3打错了应为y=2n-(2/(n+1))-(2/(n+2))+3...
y=5-(2/(n+1))-(2/(n+2)) n为大于1的正整数
求证:2n<y<2n+3
打错了
应为y=2n-(2/(n+1))-(2/(n+2))+3 展开
求证:2n<y<2n+3
打错了
应为y=2n-(2/(n+1))-(2/(n+2))+3 展开
3个回答
展开全部
y=2n-(2/(n+1))-(2/(n+2))+3
(2/(n+1))+(2/(n+2))=2n+3-y
n为大于1的正整数
(2/(n+1))+(2/(n+2)) 〉0
所以
2n+3-y 〉0
所以2n+3 〉y
y=2n-(2/(n+1))-(2/(n+2))+3
(2/(n+1))-(2/(n+2))-3=2n-y
(12n+16-9nˇ2-27n-18)/(3(n+1)(n+2))=2n-y
(-9nˇ2-15n-2)/(3(n+1)(n+2))=2n-y
因为n为大于1的正整数
所以(-9nˇ2-15n-2)<0
所以(-9nˇ2-15n-2)/(3(n+1)(n+2))<0
所以 2n-y<0
所以2n<y
综合以上得
2n<y<2n+3
(2/(n+1))+(2/(n+2))=2n+3-y
n为大于1的正整数
(2/(n+1))+(2/(n+2)) 〉0
所以
2n+3-y 〉0
所以2n+3 〉y
y=2n-(2/(n+1))-(2/(n+2))+3
(2/(n+1))-(2/(n+2))-3=2n-y
(12n+16-9nˇ2-27n-18)/(3(n+1)(n+2))=2n-y
(-9nˇ2-15n-2)/(3(n+1)(n+2))=2n-y
因为n为大于1的正整数
所以(-9nˇ2-15n-2)<0
所以(-9nˇ2-15n-2)/(3(n+1)(n+2))<0
所以 2n-y<0
所以2n<y
综合以上得
2n<y<2n+3
展开全部
证明2n<y<2n+3
可以分别证明 y>2n (i) ,
y<2n+3(ii)
由于y=2n - (2/(n+1))-(2/(n+2))+3
所以,要证明(i)成立,只须证明 3-(2/(n+1)-(2/(n+2))>0 (iii)成立.
欲证 (ii),即要证 -(2/(n+1))-(2/(n+2))+3 < 3 (iv)成立.
因为n>1,且是整数,所以 0< 2/(n+1)+2/(n+2) <= 1+2/3
所以 0 > -(2/(n+1)-(2/(n+2)) >= -1-2/3
3=0+ 3 > -(2/(n+1)-(2/(n+2))+3 >= -1-2/3+3 =2-2/3=1/3>0
所以,(iii) (iv)成立.
即(i) (ii)得证.
所以 2n<y<2n+3
可以分别证明 y>2n (i) ,
y<2n+3(ii)
由于y=2n - (2/(n+1))-(2/(n+2))+3
所以,要证明(i)成立,只须证明 3-(2/(n+1)-(2/(n+2))>0 (iii)成立.
欲证 (ii),即要证 -(2/(n+1))-(2/(n+2))+3 < 3 (iv)成立.
因为n>1,且是整数,所以 0< 2/(n+1)+2/(n+2) <= 1+2/3
所以 0 > -(2/(n+1)-(2/(n+2)) >= -1-2/3
3=0+ 3 > -(2/(n+1)-(2/(n+2))+3 >= -1-2/3+3 =2-2/3=1/3>0
所以,(iii) (iv)成立.
即(i) (ii)得证.
所以 2n<y<2n+3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |