高中数学,三角函数,求详细过程
3个回答
展开全部
1.
tanθ=tan(θ+β-β)
=[tan(θ+β)-tanβ]/[1+tan(θ+β)tanβ]
=(⅔-¼)/(1+⅔·¼)
=5/14
2.
0<x<π/2,则sinx>0
cosx=3/5,举歼sinx=√(1-cos²x)=√[1-(3/5)²]=4/5
0<x<π/2,π/2<y<π,则π/2<x+y<3π/2
又孙答穗sin(x+y)=5/13>0,因此π/2<x+y<π
cos(x+y)<0
cos(x+y)=-√[1-sin²(x+y)]=-√则卜[1-(5/13)²]=-12/13
cosy=cos(x+y-x)
=cos(x+y)cosx+sin(x+y)sinx
=(-12/13)(3/5)+(5/13)(4/5)
=-16/65
3.
tan(α+β)=tan[(α-π/6)+(π/6+β)]
=[tan((α-π/6)+tan(π/6+β)]/[1-tan(α-π/6)tan(π/6+β)]
=(3/7+ 2/5)/[1-(3/7)(2/5)]
=1
4.
sin(2x)=-cos(π/2+ 2x)
=-cos[2(x+π/4)]
=-[1-2sin²(x+π/4)]
=2sin²(x+π/4)-1
=2·(-¾)²-1
=⅛
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询