
第二题哦,求解答过程
1个回答
展开全部
解:
令x-1=t,则x=t+1
∫xln(x-1)dx
=∫(t+1)lntd(t+1)
=∫(tlnt +lnt)dt
=½t²lnt-t² +tlnt -t +C
=½(x-1)²ln(x-1) -(x-1)²+(x-1)ln(x-1) -(x-1) +C
=½(x²-1)ln(x-1) -x²+x+C
=½[(x+1)ln(x-1) -2x](x-1) +C
令x-1=t,则x=t+1
∫xln(x-1)dx
=∫(t+1)lntd(t+1)
=∫(tlnt +lnt)dt
=½t²lnt-t² +tlnt -t +C
=½(x-1)²ln(x-1) -(x-1)²+(x-1)ln(x-1) -(x-1) +C
=½(x²-1)ln(x-1) -x²+x+C
=½[(x+1)ln(x-1) -2x](x-1) +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询