
三角形重心坐标公式怎么推
就是说给你三角形三个角的坐标、为什么重心的坐标就是
重心横坐标=(X+P+J)/3
重心纵坐标=(Y+Q+K)/3
满意者有重赏 展开
重心坐标公式的推导:
设三点为A(x1.y1),B(x2,y2),C(x3,y3)
重心坐标(xm,ym)
考虑xm,任取两点(不妨设为A和B),则重心在以AB为底的中线上.
AB中点横坐标为(x1+x2)/2
重心在中线距AB中点1/3处
故重心横坐标为xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2=(x1+x2+x3)/3
同理,ym=(y1+y2+y3)/3
重心坐标的公式:
平面直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3
空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3
扩展资料:
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

2025-09-03 广告
重心坐标公式的推导:
设三点为A(x1.y1),B(x2,y2),C(x3,y3)
重心坐标(xm,ym)
考虑xm,任取两点(不妨设为A和B),则重心在以AB为底的中线上.
AB中点横坐标为(x1+x2)/2
重心在中线距AB中点1/3处
故重心横坐标为xm=1/3*(x3-(x1+x2)/2)+(x1+x2)/2=(x1+x2+x3)/3
同理,ym=(y1+y2+y3)/3
重心坐标的公式:
平面直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3
空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z2)/3
扩展资料:
重心的性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。
2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。
3、重心到三角形3个顶点距离的平方和最小。
4、以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。
外心的性质:
1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。
2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。
楼主的问题 可以建立坐标系 利用重心的特点
设A(x1,y1) B(x2,y2) C(x3,y3) BC的中点D 重心为点O,
可知 D的坐标[(x2+x3)/2,(y2+y3)/2]
利用0A=2OD 得0x= (Dx-Ax)*2/3 + Ax Oy=(Dy-Ay)*2/3 +Ay
带入各点横纵坐标 可得 重心的坐标与所给相同