帮忙算一下,要过程,谢谢
1个回答
展开全部
∫ x. √[(x-1)/(x+1)] dx
=∫ x(x-1)/√(x^2-1) dx
=∫ x^2/√(x^2-1) dx - ∫ x/√(x^2-1) dx
=∫ x^2/√(x^2-1) dx - (1/2)∫ d(x^2-1)/√(x^2-1)
=∫ x^2/√(x^2-1) dx - √(x^2-1)
=(1/2)[ √(x^2-1) +ln|x+ √(x^2-1)/x | ] - √(x^2-1) + C
=(1/2)[ -√(x^2-1) +ln|x+ √(x^2-1)/x | ] + C
let
x= secu
dx = secu. tanu du
∫ x^2/√(x^2-1) dx
=∫ [(secu)^2/tanu] secu. tanu du
=∫ (secu)^3 du
=∫ secu dtanu
= secu.tanu - ∫ (tanu)^2 .secu du
= secu.tanu - ∫ [(secu)^2-1] .secu du
2∫ (secu)^3 du = secu.tanu +∫secu du
∫ (secu)^3 du = (1/2)[ secu.tanu +ln|secu+ tanu| + C'
=>
∫ x^2/√(x^2-1) dx
=(1/2)[ secu.tanu +ln|secu+ tanu| ] + C'
=(1/2)[ √(x^2-1) +ln|x+ √(x^2-1)/x | ] + C'
cosu = 1/x
tanu =
=∫ x(x-1)/√(x^2-1) dx
=∫ x^2/√(x^2-1) dx - ∫ x/√(x^2-1) dx
=∫ x^2/√(x^2-1) dx - (1/2)∫ d(x^2-1)/√(x^2-1)
=∫ x^2/√(x^2-1) dx - √(x^2-1)
=(1/2)[ √(x^2-1) +ln|x+ √(x^2-1)/x | ] - √(x^2-1) + C
=(1/2)[ -√(x^2-1) +ln|x+ √(x^2-1)/x | ] + C
let
x= secu
dx = secu. tanu du
∫ x^2/√(x^2-1) dx
=∫ [(secu)^2/tanu] secu. tanu du
=∫ (secu)^3 du
=∫ secu dtanu
= secu.tanu - ∫ (tanu)^2 .secu du
= secu.tanu - ∫ [(secu)^2-1] .secu du
2∫ (secu)^3 du = secu.tanu +∫secu du
∫ (secu)^3 du = (1/2)[ secu.tanu +ln|secu+ tanu| + C'
=>
∫ x^2/√(x^2-1) dx
=(1/2)[ secu.tanu +ln|secu+ tanu| ] + C'
=(1/2)[ √(x^2-1) +ln|x+ √(x^2-1)/x | ] + C'
cosu = 1/x
tanu =
追问
∫ x^2/√(x^2-1) dx =
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询