证明2^x–x²–1=0有且只有三个解
2个回答
展开全部
设f(x)=2^x-x²-1。 假设f(x)=0有4个实根,则由洛尔定理知f`(x)=0至少有3个实根, 同理f``(x)=0至少有2个实根。而f``(x)=(2^x)ln2-2=0只有1个实根,矛盾! 故f(x)=0至多只有3个实根。 易知f(0)=f(1)=0。 f(4)=-1<0,f(5)=6>0,由零点定理知,至少存在一个ξ∈(4,5),使得f(ξ)=0,即f(x)=0至少有3个实根。 综上,方程2^x-x²-1=0有且仅有三个不等的实根。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询