大神!高数。积分中值定理!书上是闭区间。做题却都是开区间!怎么解释??

 我来答
茶馆65
高粉答主

2020-09-06 · 每个回答都超有意思的
知道答主
回答量:374
采纳率:0%
帮助的人:13万
展开全部

(a , b)


如果用介值定理证明积分中值定理,由于介值定理的结论是[a,b],故证明的积分中值定理结论也是[a,b],如果用拉格朗日中值定理证明的话,由于拉中的结论只能推出(a,b),所以证出来的积分中值定理也只能是(a,b)。


积分中值定理有三个形式(起码在数学分析里是三种):第一中值及其推广形式,以及第二中值定理。其中第一中值定理的描述是说中值点在闭区间取,同时注明开区间内也一定存在中值点。证明过程看你用什么工具,证明闭区间结论的一定是牵扯到函数的连续性,开区间的一定是出现在微分中值定理。


开区间是推广定理,我也不知道考研到底让不让用,但是确实是可以证明的。


houseTLZ
2019-07-29
知道答主
回答量:1
采纳率:0%
帮助的人:727
展开全部

开区间是推广定理,我也不知道考研到底让不让用,但是确实是可以证明的。下面的是推广定理,g(x)=1即可

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
LeCcoo丶
2018-08-20
知道答主
回答量:1
采纳率:0%
帮助的人:845
展开全部
首先,积分中值定理有三个形式(起码在数学分析里是三种),第一中值及其推广形式,以及第二中值定理。其中第一中值定理的描述是说中值点在闭区间取,同时注明开区间内也一定存在中值点。证明过程看你用什么工具,证明闭区间结论的一定是牵扯到函数的连续性,开区间的一定是出现在微分中值定理
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
混吃混喝金丝熊
2020-04-02
知道答主
回答量:1
采纳率:0%
帮助的人:641
展开全部
设一个函数g(x)为∫f(x)dx。
对g(x)用拉格朗日中值定理有
g(b)-g(a)=g'(n)(b-a),n属于(a,b)的开区间
又因为g'(x)=f(x)(不懂的话看看变限积分,可以百度一下)
得到∫f(x)dx=f(n)(b-a), n属于(a,b)的开区间
所以做题可以用积分中值定理证明开区间。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无聊slf
2019-10-18
知道答主
回答量:1
采纳率:0%
帮助的人:699
展开全部
看《高数十八讲》p97有一定启发,如果用介值定理证明积分中值定理,由于介值定理的结论是[a,b],故证明的积分中值定理结论也是[a,b];如果用拉格朗日中值定理证明的话,由于拉中的结论只能推出(a,b),所以证出来的积分中值定理也只能是(a,b)。
一家之言,经供参考
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式