libsvm怎么处理“数据集不平衡”的问题
1个回答
展开全部
首先,数据集不平衡会造成怎样的问题呢。一般的学习器都有下面的两个假设:一个是使得学习器的准确率最高,另外一个是学习器应该用在与训练集有相同分布的测试集上。如果数据不平衡,那么学习器使得它的准确率最高肯定是更偏向于预测结果为比例更大的类别。比如说阳性的比例为1%,阴性的比例为99%,很明显的是即使不学习,直接预测所有结果为阴性,这样做的准确率也能够达到99%,而如果建立学习器也很有可能没有办法达到99%。这就是数据比例不平衡所造成的问题。这样建立的模型即使准确率再高,在实际应用的时候效果肯定不好,而且也不是我们想要的模型。
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询