函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围x^2+2x+a整个除以x。要过程...
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围
x^2+2x+a整个除以x。要过程 展开
x^2+2x+a整个除以x。要过程 展开
2个回答
展开全部
解: (1)当a=1/2时 x∈[1,+∞]
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我。
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |