
第10,11题怎么做?说一下基本思路就行😊😊
2个回答
展开全部
10.
令x=tanu
x:1→√3,则u:π/4→π/3
∫[1:√3]dx/[x²√(1+x²)]
=∫[π/4:π/3]d(tanu)/[tan²u√(1+tan²u)]
=∫[π/4:π/3] (cosu/sin²u)du
=-cscu|[π/4:π/3]
=-(2/√3 -2/√2)
=(3√2-2√3)/3
11.
令x=√2sint
x:0→1,则t:0→π/4
∫[0:1]x²√(2-x²)dx
=∫[0:π/4]2sin²t·√2costd(√2sint)
=∫[0:π/4](4sin²tcos²t)dt
=∫[0:π/4](sin²2t)dt
=⅛∫[0:π/4](1-cos4t)d(4t)
=⅛(4t-sin4t)|[0:π/4]
=⅛[(π-0)-(0-0)]
=π/8
令x=tanu
x:1→√3,则u:π/4→π/3
∫[1:√3]dx/[x²√(1+x²)]
=∫[π/4:π/3]d(tanu)/[tan²u√(1+tan²u)]
=∫[π/4:π/3] (cosu/sin²u)du
=-cscu|[π/4:π/3]
=-(2/√3 -2/√2)
=(3√2-2√3)/3
11.
令x=√2sint
x:0→1,则t:0→π/4
∫[0:1]x²√(2-x²)dx
=∫[0:π/4]2sin²t·√2costd(√2sint)
=∫[0:π/4](4sin²tcos²t)dt
=∫[0:π/4](sin²2t)dt
=⅛∫[0:π/4](1-cos4t)d(4t)
=⅛(4t-sin4t)|[0:π/4]
=⅛[(π-0)-(0-0)]
=π/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询