3个回答
展开全部
关于无穷型的证明,书上没有,但是可以简单0/0型推导出来。
设无穷型f(x)/g(x),也就是说x趋于a,f(x),g(x)都趋于无穷大。
那相应0/0类型则为
f(x)/g(x)=(1/g(x))/(1/f(x)),等式右面就是00型,对右面用法则
=[g'(x)/g^2 (x)]/[f'(x)/f^2 (x)] 这个式子明白吧,格式问题比较抽象
简化后就是=[g'(x)/f'(x)]*[f(x)/g(x)]^2 在和等式右面约去化简
最后f(x)/g(x)=f'(x)/g'(x)
得证
也可以用中值定理证明,挺麻烦的
设无穷型f(x)/g(x),也就是说x趋于a,f(x),g(x)都趋于无穷大。
那相应0/0类型则为
f(x)/g(x)=(1/g(x))/(1/f(x)),等式右面就是00型,对右面用法则
=[g'(x)/g^2 (x)]/[f'(x)/f^2 (x)] 这个式子明白吧,格式问题比较抽象
简化后就是=[g'(x)/f'(x)]*[f(x)/g(x)]^2 在和等式右面约去化简
最后f(x)/g(x)=f'(x)/g'(x)
得证
也可以用中值定理证明,挺麻烦的
展开全部
limx^nlnx=lim(lnx/(1/x)^n)=-lim((1/x)/n(1/x)^(n-3))=lim(1/n)x^(n-3)=0(n趋于0+)。这个过程完全就用的是洛必达法则,因为它满足洛必达法则的条件,不需要再证明其他什么东西了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询