全导数和偏导数的区别

 我来答
haha60
高能答主

2020-12-03 · 这家伙很懒,真的懒!
haha60
采纳数:748 获赞数:1797

向TA提问 私信TA
展开全部
二者的适用对象不同。偏导数针对的是多元函数,全导数针对的是一元函数。
偏导数:求一个函数的偏导数就是当此函数含有多个变量时,在其他变量保持恒定只求之中一个变量的导数。所以说偏导数主要针对多元函数。
全导数:函数z=f(m,n),其中自变量x构成了中间变量m=m(x),n=n(x),且z为关于x的一元函数。这时称z的导数就为全导数。所以说全导数主要针对复合型一元函数。
1、在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
2、已知二元函数z=f(u,v),其中u、v是关于x的一元函数,有u=u(x)、v=v(x),u、v作为中间变量构成自变量x的复合函数z,它最终是一个一元函数,它的导数就称为全导数。全导数的出现可以作为一类导数概念的补充,其中渗透着整合全部变量的思想。对全导数的计算主要包括一一型锁链法则、二一型锁链法则、三一型锁链法则,其中二一型锁链法则最为重要,并且可以将二一型锁链法则推广到更加一般的情况n一型锁链法则。
国亨橡胶
2017-04-13 · TA获得超过1215个赞
知道小有建树答主
回答量:847
采纳率:77%
帮助的人:108万
展开全部
偏导数是只对其中一个变量求导数,物理几何意义是一个平面(平行于x或y或z轴)上的一条线
全导数是对各个变量求偏导后叠加
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
窀穸雾三
2017-04-13 · TA获得超过105个赞
知道答主
回答量:19
采纳率:0%
帮助的人:8.3万
展开全部
偏导数是只对其中一个变量求导数
全导数是对各个变量求偏导后叠加
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式