2个回答
展开全部
首先,任何一个可逆矩阵都可以写成一系列初等矩阵的乘积。
其次,对矩阵A进行行初等变换,相当于左乘以一和初等矩阵,对A进行列初等变换,相当于右乘以一个初等矩阵。
最后,对可逆矩阵A进行一系列的初等行变换,一定可以把A化为单位矩阵E,即存在矩阵P,使得PA=E。所以对分块矩阵(A,E)进行一系列初等行变换,化A为E,此时对E也进行了同样的初等行变换,所以就相当于对(A,E)左乘以矩阵P,所以P(A,E)=(PA,P)=(E,P),P就是A的逆矩阵。
同样地,如果对矩阵
(A)
(E)
只进行初等列变换,化A为E,则E同时变换为A的逆矩阵。
其次,对矩阵A进行行初等变换,相当于左乘以一和初等矩阵,对A进行列初等变换,相当于右乘以一个初等矩阵。
最后,对可逆矩阵A进行一系列的初等行变换,一定可以把A化为单位矩阵E,即存在矩阵P,使得PA=E。所以对分块矩阵(A,E)进行一系列初等行变换,化A为E,此时对E也进行了同样的初等行变换,所以就相当于对(A,E)左乘以矩阵P,所以P(A,E)=(PA,P)=(E,P),P就是A的逆矩阵。
同样地,如果对矩阵
(A)
(E)
只进行初等列变换,化A为E,则E同时变换为A的逆矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询