4个回答
展开全部
可惜一楼混淆了位移跟路程的概念。
二楼的思路是对的,可惜没有解释清楚,举例中的初速度为0是不必要的。
三楼的补习老师的解释只说对了一半,他的初速度为0的假设是不正确的。
1、先解释 x = ut + ½at² 的物理意义:
x 是t时间内的位移(displacement),不是路程(distance);
u 是初速度,不要用速率的概念,否则会对以后的学习带来麻烦;
a 是加速度,是匀加速度(uniform acceleration),不是平均加速度(average acceleration);
t 是时间,不是简单的时刻概念。
2、公式 x = ut + ½at² 的适用条件:
(1)、匀加速度;
(2)、一维直线运动。
3、公式 x = ut + ½at² 的完整意思:
以初速度u、匀加速度a,在t秒的时间内,物体的位置产生的移动。
4、Δx = at² 的实际意义:
经过t秒后,速度变成v,此后又经历第二段时间t秒,
第二个t秒内的位移:x’= vt + ½at²
Δx = x' - x = (v - u)t = (at)t = at²
所以,Δx = at² 的实际意义是:
匀加速直线运动中,在两个连续的、同样的时间间隔内,第二段时间内比第
一段时间内,多产生的位移。
5、举例验证:
例题:一物体做匀加速度直线运动,初速度为2m/s,加速度为6m/s²。
第一个1秒内的位移:x1 = 2×1 + ½×6×1² = 5
第二个1秒内的位移:x2 = (2 + 6×1)×1 + ½×6×1² = 11
x2 - x1 = 11 - 5 = 6 (m)
at² = 6×1² = 6 (m) [正确]
第一个2秒内的位移:x1 = 2×2 + ½×6×2² = 16
第二个2秒内的位移:x2 = (2 + 6×2)×2 + ½×6×2² = 40
x2 - x1 = 40 - 16 = 24 (m)
at² = 6×2² = 24 (m) [正确]
第一个3秒内的位移:x1 = 2×3 + ½×6×3² = 33
第二个3秒内的位移:x2 = (2 + 6×3)×3 + ½×6×3² = 87
x2 - x1 = 87 - 33 = 54 (m)
at² = 6×3² = 54 (m) [正确]
第一个4秒内的位移:x1 = 2×4 + ½×6×4² = 56
第二个4秒内的位移:x2 = (2 + 6×4)×4 + ½×6×4² = 152
x2 - x1 = 152 - 56 = 96 (m)
at² = 6×4² = 96 (m) [正确]
第一个5秒内的位移:x1 = 2×5 + ½×6×5² = 85
第二个5秒内的位移:x2 = (2 + 6×5)×5 + ½×6×5² = 235
x2 - x1 = 235 - 85 = 150 (m)
at² = 6×5² = 150 (m) [正确]
。。。。。。。。。。。。。。。。。。。。。
楼主应该明白了吧? 如有疑问,欢迎一起讨论。
二楼的思路是对的,可惜没有解释清楚,举例中的初速度为0是不必要的。
三楼的补习老师的解释只说对了一半,他的初速度为0的假设是不正确的。
1、先解释 x = ut + ½at² 的物理意义:
x 是t时间内的位移(displacement),不是路程(distance);
u 是初速度,不要用速率的概念,否则会对以后的学习带来麻烦;
a 是加速度,是匀加速度(uniform acceleration),不是平均加速度(average acceleration);
t 是时间,不是简单的时刻概念。
2、公式 x = ut + ½at² 的适用条件:
(1)、匀加速度;
(2)、一维直线运动。
3、公式 x = ut + ½at² 的完整意思:
以初速度u、匀加速度a,在t秒的时间内,物体的位置产生的移动。
4、Δx = at² 的实际意义:
经过t秒后,速度变成v,此后又经历第二段时间t秒,
第二个t秒内的位移:x’= vt + ½at²
Δx = x' - x = (v - u)t = (at)t = at²
所以,Δx = at² 的实际意义是:
匀加速直线运动中,在两个连续的、同样的时间间隔内,第二段时间内比第
一段时间内,多产生的位移。
5、举例验证:
例题:一物体做匀加速度直线运动,初速度为2m/s,加速度为6m/s²。
第一个1秒内的位移:x1 = 2×1 + ½×6×1² = 5
第二个1秒内的位移:x2 = (2 + 6×1)×1 + ½×6×1² = 11
x2 - x1 = 11 - 5 = 6 (m)
at² = 6×1² = 6 (m) [正确]
第一个2秒内的位移:x1 = 2×2 + ½×6×2² = 16
第二个2秒内的位移:x2 = (2 + 6×2)×2 + ½×6×2² = 40
x2 - x1 = 40 - 16 = 24 (m)
at² = 6×2² = 24 (m) [正确]
第一个3秒内的位移:x1 = 2×3 + ½×6×3² = 33
第二个3秒内的位移:x2 = (2 + 6×3)×3 + ½×6×3² = 87
x2 - x1 = 87 - 33 = 54 (m)
at² = 6×3² = 54 (m) [正确]
第一个4秒内的位移:x1 = 2×4 + ½×6×4² = 56
第二个4秒内的位移:x2 = (2 + 6×4)×4 + ½×6×4² = 152
x2 - x1 = 152 - 56 = 96 (m)
at² = 6×4² = 96 (m) [正确]
第一个5秒内的位移:x1 = 2×5 + ½×6×5² = 85
第二个5秒内的位移:x2 = (2 + 6×5)×5 + ½×6×5² = 235
x2 - x1 = 235 - 85 = 150 (m)
at² = 6×5² = 150 (m) [正确]
。。。。。。。。。。。。。。。。。。。。。
楼主应该明白了吧? 如有疑问,欢迎一起讨论。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
我是补习社老师,这个公式使用条件是:前提是物体在做初速度为0的匀变速直线运动可以使用,就是加速度a不变的加速运动。然后条件是---两个相邻的相等时间段的位移差Δs=at^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设一段的时间是△t
在相邻的两个位移中
平均速度差为 a*△t
即每一刻都比上一△t快a*△t
所以路程差为 (V平均后-V平均前)*△t=a△t^2
使用的话用于两段相邻的等时的时间段的匀变速直线运动
在相邻的两个位移中
平均速度差为 a*△t
即每一刻都比上一△t快a*△t
所以路程差为 (V平均后-V平均前)*△t=a△t^2
使用的话用于两段相邻的等时的时间段的匀变速直线运动
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
s1=v0t+1/2at^2 ①
s2=v1t+1/2at^2 ②
......
sn=v(n-1)t+1/2at^2
v1=v0+at ③
将③代入②有:
s2=(v0+at)t+1/2at^2=v0t+at^2+1/2at^2
s2-s1=at^2
同理
sn-s(n-1)=at^2
嗯.举个简单的例子!
例:物体从静止开始作匀加速直线运动.第1s运动2m,第2m运动6m,求加速度a?
据题有,▲x=6m-2m=4m , t=1s
代入a=▲x/t有
a=4/1^2=4m/s
说白了就是开篇的那个测纸带速度的
s2=v1t+1/2at^2 ②
......
sn=v(n-1)t+1/2at^2
v1=v0+at ③
将③代入②有:
s2=(v0+at)t+1/2at^2=v0t+at^2+1/2at^2
s2-s1=at^2
同理
sn-s(n-1)=at^2
嗯.举个简单的例子!
例:物体从静止开始作匀加速直线运动.第1s运动2m,第2m运动6m,求加速度a?
据题有,▲x=6m-2m=4m , t=1s
代入a=▲x/t有
a=4/1^2=4m/s
说白了就是开篇的那个测纸带速度的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询