洛必达法则是什么,能否举个例题详细解答
2个回答
2017-07-24 · 让每个孩子都能正常讲话,是我们最大的心愿
阳光语言矫正学校
1992年开始语音病理学研究,北京、上海 、长春设有校区,功能性构音障碍、腭裂语音障碍、听力言语障碍、语言发育迟缓、口吃等多个语音矫正和训练项目,对大舌头 口吃等各种语言障碍有数万例矫正经验
向TA提问
关注
展开全部
洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
0/0型不定式极限 若函数 和 满足下列条件: ⑴ , ; ⑵ 在点 的某去心邻域内两者都可导,且 ; ⑶ ( 可为实数,也可为 ±∞ ), 则 ∞/∞型不定式极限 若函数 和 满足下列条件: ⑴ , ; ⑵ 在点 的某去心邻域内两者都可导,且 ; ⑶ ( 可为实数,也可为 或 ), 则 其他类型不定式极限 不定式极限还有 , , , , 等类型。经过简单变换,它们一般均可化为 型或 型的极限。 (1) 型 可将乘积中的无穷小或无穷大变形到分母上,化为 型或 型。 例:求 解:原式= (2) 型 把两个无穷大变形为两个无穷小的倒数,再通分使其化为 型。 例:求 解:原式= (3) 型 可利用对数性质 将函数化简成以e为底数的指数函数,对指数进行求极限。 针对不同的问题,还可以利用等价无穷小 作替换,化简算式。 例:求 解:原式= = = = = = 上式求解过程中,利用了等价无穷小的替换,即把 替换成了 。 (4) 型 同上面的化简方法 例:求 解:原式= (5) 型 同上面的化简方法 例:求 解:原式= 注意 不能在数列形式下直接用洛必达法则,因为对于离散变量 是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。
0/0型不定式极限 若函数 和 满足下列条件: ⑴ , ; ⑵ 在点 的某去心邻域内两者都可导,且 ; ⑶ ( 可为实数,也可为 ±∞ ), 则 ∞/∞型不定式极限 若函数 和 满足下列条件: ⑴ , ; ⑵ 在点 的某去心邻域内两者都可导,且 ; ⑶ ( 可为实数,也可为 或 ), 则 其他类型不定式极限 不定式极限还有 , , , , 等类型。经过简单变换,它们一般均可化为 型或 型的极限。 (1) 型 可将乘积中的无穷小或无穷大变形到分母上,化为 型或 型。 例:求 解:原式= (2) 型 把两个无穷大变形为两个无穷小的倒数,再通分使其化为 型。 例:求 解:原式= (3) 型 可利用对数性质 将函数化简成以e为底数的指数函数,对指数进行求极限。 针对不同的问题,还可以利用等价无穷小 作替换,化简算式。 例:求 解:原式= = = = = = 上式求解过程中,利用了等价无穷小的替换,即把 替换成了 。 (4) 型 同上面的化简方法 例:求 解:原式= (5) 型 同上面的化简方法 例:求 解:原式= 注意 不能在数列形式下直接用洛必达法则,因为对于离散变量 是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。
更多追问追答
追问
还是举个例题。。。这样不懂啊
追答
举例:lim(x->+无穷)(x^2-1)/(2x^2+2x+1)
=lim(x->+无穷)(2x)/(4x+2)
=lim(x->+无穷)2/4
=1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询