2个回答
展开全部
函数图像依次如下:
扩展资料:
三角函数的性质
1、三角函数的周期性。其一是f(x+T)=f(x)时,只有对于定义域中的任意一个x都成立,非零常数T才是f(x)的周期,这是因为周期性所规定的三角函数性质,是对于整个三角函数而言的。
函数值重复出现的自变量x的增加值就是周期。具体来说就是:sin(2kπ+x)=sinx对定于域中的任意一个x均成立,所以2kπ(k∈Z且k≠0)是y=sinx的周期,最小正周期则为2π。
而对于函数y=cosx来说,其周期则为2kπ(k∈Z且k≠0),最小正周期则为2π。而tan(kπ+x)=tanx对于定义域中的任意一个x均成立,则其周期为kπ(k∈Z且k≠0),最小正周期则为π。
2、三角函数的对称性。三角函数的图像不仅是轴对称图形,同时也是中心对称图形,对称轴正好是过定点与x轴垂直的直线,三角函数的零点正好是其对称中心。
三角函数y=sinx的对称轴为x=kπ+ ,对称中心为(kπ,0)k∈Z。三角函数y=cosx的对称轴为x=kπ,对称中心为(kπ+ ,0)k∈Z。
因此,在画三角函数的图像之前,应当弄清楚画函数的周期的方式,然后再用五点法画出函数在一个周期上的图像即可。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询