高数中怎么判断函数是有界还是无界的?
函数有界性的充分必要条件是必须既有上界,又有下界。因为这是有界函数的定义。也就是说规定了这样的函数才是有界函数。
解题过程如下:
设函数f(x)在数集X有定义
试证:函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。证明:
充分性:若f(x)上界 M 下界N
则:|f(x)|<=Max{M,N}
一般来说,连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
sinx,cosx,sin(1/x),cos(1/x), arcsinx,arccosx,arctanx,arccotx是常见的有界函数。
扩展资料
如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。
反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。
如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。
此外,函数f(x)在X上有界的充分必要条件是它在X上既有上界也有下界。
2023-08-25 广告
2017-10-23
换一句话来说,你随便找一个足够大的正数M,你总可以找到一个x使得f‘(x)=M,这也就是“想要多大就有多大”的数学解释