
2个回答
展开全部
原式=[(cosα)^2-(sinα)^2]*(1+tanαtan2α)
=cos2α(1+tanαtan2α)
=cos2α+tanαsin2α
=cos2α+sinα/cosα*2sinαcosα
=cos2α+2(sinα)^2
=(cosα)^2-(sinα)^2+2(sinα)^2
=(cosα)^2+(sinα)^2
=1.
=cos2α(1+tanαtan2α)
=cos2α+tanαsin2α
=cos2α+sinα/cosα*2sinαcosα
=cos2α+2(sinα)^2
=(cosα)^2-(sinα)^2+2(sinα)^2
=(cosα)^2+(sinα)^2
=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询