高数大神帮帮忙 20
1个回答
展开全部
∫(cosx)^2/(sinx)^3*dx
=∫cosx/(sinx)^3*d(sinx)
=-2∫cosxd[1/(sinx)^2]
=-2cosx/(sinx)^2+2∫1/(sinx)^2*d(cosx)
=-2cosx/(sinx)^2+2∫1/[1-(cosx)^2]*d(cosx)
=-2cosx/(sinx)^2+2*(1/2)ln|(1+cosx)/(1-cosx)|+C
=-2cosx/(sinx)^2+ln[(1+cosx)/(1-cosx)]+C
=∫cosx/(sinx)^3*d(sinx)
=-2∫cosxd[1/(sinx)^2]
=-2cosx/(sinx)^2+2∫1/(sinx)^2*d(cosx)
=-2cosx/(sinx)^2+2∫1/[1-(cosx)^2]*d(cosx)
=-2cosx/(sinx)^2+2*(1/2)ln|(1+cosx)/(1-cosx)|+C
=-2cosx/(sinx)^2+ln[(1+cosx)/(1-cosx)]+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询