将f(x)展开成x的幂级数
1个回答
展开全部
f(x)=ln(a+x) =>f(0) = lna
f'(x) = 1/(a+x) =>f'(0)/1! = 1/a
f''(x) = -1/(a+x)^2 =>f''(0)/2! = -1/(2a^2)
f'''(x) = 2/(a+x)^3 =>f'''(0)/3! = 1/(3a^2)
...
..
f^(n)(x) = (-1)^(n-1) .(n-1)!/(a+x)^n =>f^(n)(0)/n! = (-1)^(n-1)/(na^n)
ln(a+x)
=lna +(1/a)x -[1/(2a^2)]x^2 +....+[(-1)^(n-1)/(na^n)]x^n +....
f'(x) = 1/(a+x) =>f'(0)/1! = 1/a
f''(x) = -1/(a+x)^2 =>f''(0)/2! = -1/(2a^2)
f'''(x) = 2/(a+x)^3 =>f'''(0)/3! = 1/(3a^2)
...
..
f^(n)(x) = (-1)^(n-1) .(n-1)!/(a+x)^n =>f^(n)(0)/n! = (-1)^(n-1)/(na^n)
ln(a+x)
=lna +(1/a)x -[1/(2a^2)]x^2 +....+[(-1)^(n-1)/(na^n)]x^n +....
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询