复数的运算

怎么计算4√i?(用多种方法)... 怎么计算4√i ?
(用多种方法)
展开
 我来答
帐号已注销
2018-11-01 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.7万
展开全部

复数是形如 a + b i的数。式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。

在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。

复数有多种表示形式,常用形式 z = a + b i叫做代数式。此外有下列形式。

①几何形式。复数 z = a + b i 用直角坐标平面上点 Z ( a , b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。

②向量形式。复数 z = a + b i用一个以原点 O 为起点,点 Z ( a , b )为终点的向量 O Z 表示。这种形式使复数的加、减法运算得到恰当的几何解释。

③三角形式。复数 z= a + b i化为三角形式

z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。

④指数形式。将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式

z =| z | e i q , 复数的乘、除、乘方、开方可以按照幂的运算法则进行。

复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序。

扩展资料:

根据定义,若  (a,b∈R),则  =a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。

在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源----两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。

1 加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

即 

2 乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

即 

3 除法法则

复数除法定义:满足  的复数  叫复数a+bi除以复数c+di的商。

运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,

即 

4 开方法则

若zn=r(cosθ+isinθ),则 (k=0,1,2,3…n-1)

我们把数学分析中基本的实变初等函数推广到复变初等函数,使得定义的各种复变初等函数,当z变为实变数x(y=0)时与相应的实变初等函数相同。

注意根据这些定义,在z为任意复变数时,

①.哪些相应的实变初等函数的性质被保留下来

②.哪些相应的实变初等函数的性质不再成立

③.出现了哪些相应的实变初等函数所没有的新的性质。

复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。

加法法则

复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,

则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。

两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。

复数的加法满足交换律和结合律,

即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。

减法法则

复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,

则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。

两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。

参考资料:百度百科-复数

逆徒cW
2018-10-31 · TA获得超过3734个赞
知道大有可为答主
回答量:5467
采纳率:31%
帮助的人:389万
展开全部
复数运算:点红圈2处(MODE键),然后选CMPLX选项,屏幕上会出现红圈5的标志;然后就可以通过点 红圈3(ENG) 输入复数标志“i”了,输入好后就可以按正常运算步骤进行加减乘除的运算。 复数向量转角度向量:点 红圈1(shift)+ 红圈4 可以进行复数向量和角度向量之间的转换。(这个操作也要在CMPLX模式下)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
俎欣可定菊
游戏玩家

2020-03-22 · 游戏我都懂点儿,问我就对了
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:715万
展开全部
z=a+bi,ˉz=a-ˉbi,直接加就行了,乘除要注意i^2=-1
a+bi)+(c+di)=(a+c)+(b+d)i,
(a+bi)-(c+di)=(a-c)+(b-d)i,
(a+bi)•(c+di)=(ac-bd)+(bc+ad)i,
(c与d不同时为零)
(a+bi)÷(c+di)=(ac+bd/c^2+d^2)+(bc-ad/c^2+d^2)i,
(c+di)不等于0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
果实课堂
高粉答主

2020-02-26 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:7.4万
采纳率:81%
帮助的人:3892万
展开全部

复数的加减乘除运算

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
科协共建
2019-11-13 · TA获得超过937个赞
知道答主
回答量:1386
采纳率:0%
帮助的人:75.8万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式