求f(x)的表达式
2个回答
展开全部
f(x)+2∫(0->x) f(t) dt =x^2
x=0, =>f(0) = 0
f(x)+2∫(0->x) f(t) dt =x^2
两边求导
f'(x)+2f(x) =2x
let
yg= A.e^(-2x)
yp= Bx+C
yp' = B
yp'+2yp = 2x
B+2(Bx+C) =2x
2Bx + (B+2C) = 2x
=>
2B=2 and B+2C =0
B=1 and C=-1/2
ie
yp=x - 1/2
f(x) = yg+ yp = A.e^(-2x) +x - 1/2
f(0) =0
A - 1/2 =0
A=1/2
ie
f(x) =(1/2)e^(-2x) +x - 1/2
x=0, =>f(0) = 0
f(x)+2∫(0->x) f(t) dt =x^2
两边求导
f'(x)+2f(x) =2x
let
yg= A.e^(-2x)
yp= Bx+C
yp' = B
yp'+2yp = 2x
B+2(Bx+C) =2x
2Bx + (B+2C) = 2x
=>
2B=2 and B+2C =0
B=1 and C=-1/2
ie
yp=x - 1/2
f(x) = yg+ yp = A.e^(-2x) +x - 1/2
f(0) =0
A - 1/2 =0
A=1/2
ie
f(x) =(1/2)e^(-2x) +x - 1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询