物理模拟实验仪器选用
2020-01-16 · 技术研发知识服务融合发展。
根据煤粉产出物理模拟实验的原理及目的,需要设计可以满足该实验要求的仪器装置。这些要求包括:
(1)满足模拟地层流体在煤储层裂隙之间的流动要求;
(2)满足模拟煤储层经储层改造后的裂隙展布效果要求;
(3)满足模拟煤储层在含煤地层中的赋存状态要求;
(4)满足模拟煤层气井排水→降压→采气的生产模式要求。
通过一系列的摸索与尝试,确定了该物理模拟实验仪器装置的主体系统结构,其中包括计算机监控系统、样品制备系统、泵送驱替系统、物理模拟系统、煤粉储集系统、煤粉分析系统、电力动力系统等。
(1)计算机监控系统:主要由计算机操控平台和驱替导流监测平台等组成。计算机操控平台提供半自动半人工化功能服务,通过计算机实现对驱替导流监测平台的操控,可以满足不同条件下物理模拟实验的要求。同时,驱替导流监测平台实现流体相态驱替模式、自动调控驱替流速及压力、实时监测导流状况及实时记录排出产物状况等。
表5-3 煤体结构差异对煤粉产出的影响研究实验方案
(2)样品制备系统:主要由制样模具、升降施压油缸、平台支架等组成。制备样品的前期准备工作需要碎样机、标准样品筛、电子天平等辅助设备。首先使用碎样机将煤岩样品破碎,经过标准样品筛的筛选,选用一定粒度的煤粉颗粒,依据制样模具的尺寸形状,在升降施压油缸的挤压作用下,制作煤砖样,用于煤粉产出物理模拟实验。该系统需要通过计算机监控系统控制升降施压油缸,为制样提供稳定的压力。
(3)泵送驱替系统:主要由平流泵、储液容器、驱替液、导流室、无缝钢导管、法兰等组成。该系统的工作原理是通过调整平流泵的泵送功率,使其提供一定流速的稳定流体,该流体将储液容器内的驱替液以同等速率注入导流室内,对导流室中的煤砖进行驱替作用,同时,需要导流室的左右两侧分别安装进出液孔道,并在进出口端部安装测压孔道及相应法兰。在此过程中,通过驱替导流监测平台调控平流泵的泵送功率、设置驱替作用的周期及数据记录频率等参数。
(4)物理模拟系统:主要由煤砖样、石英砂、导流室、金属垫片、塑料密封圈、差压传感器、升降施压油缸、平台支架等组成。该系统的工作原理是通过在两块煤砖中夹持石英砂颗粒进行人工造缝,模拟煤储层经过储层改造后的裂隙延展状态;由泵送驱替系统向导流室内提供一定流速的驱替液,模拟地层流体在煤储层裂隙之间的流动过程;由计算机监控系统调控升降施压油缸,使其对导流室内的煤砖产生稳定围压,模拟煤储层在含煤地层中的赋存状态。该系统是在计算机监控系统、泵送驱替系统及物理模拟系统的相互配合下进行的,由平流泵提供驱替流体,由升降施压油缸提供挤压力,由驱替导流监测平台调控记录驱替液流速、油缸压力等参数,由金属垫片和塑料密封圈来保证导流室中煤砖处于密封状态。
(5)煤粉储集系统:主要由电子天平、无缝钢导管、烧杯等组成。该系统的工作原理是收集由物理模拟系统排出的液体及其中煤粉,同时通过驱替导流监测平台对排出液进行实时称重并储存数据结果。
(6)煤粉分析系统:主要由激光粒度仪、滤纸、过滤器、恒温烘干机、电子天平、显微镜、扫描电镜、X射线衍射仪等组成。该系统的工作原理是采用激光粒度仪对不同实验条件中产出的煤粉进行粒度分布测试;采用过滤器及恒温烘干机将排出液中的煤粉进行过滤烘干;采用电子天平对干燥的煤粉颗粒进行精密称重;采用显微镜、扫描电镜、X射线衍射仪分析煤粉的显微形态及物质成分。从煤粉的粒度、质量、显微状态和物质成分等角度研究煤粉的产出物性特征。
(7)电力动力系统:主要由配电箱和电动机等组成。该系统为物理模拟实验设备装置的其他系统提供电力及动力保障。
图5-1 煤粉产出物理模拟实验仪器设计示意图
根据上述物理模拟实验仪器装置功能要求,实验仪器设计如图5-1所示。通过调研,在综合考虑物理模拟实验的可行性情况下,采用HXDL-Ⅱ型酸蚀裂隙导流仪作为测试仪器。该仪器可以在标准实验条件下模拟地层压力及温度状态,可以实现气、液两相驱替过程,并能评价裂缝的导流能力。其装置流程如图5-2所示。根据上述物理模拟实验装置的说明,选用的酸蚀裂隙导流仪的主体系统均达到开展实验的要求,各个装置部件可以满足实验的需求。该仪器的各项参数是参照《SY-T 6302—1997 压裂支撑剂充填层短期导流能力评价推荐方法》标准而设定的。
图5-2 酸蚀裂缝导流仪流程示意图
2024-09-01 广告