常微分方程,求解非齐次线性方程的初值问题!
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
展开全部
(1) dx/dt + 2x/t = 1, 一阶线性微分方程
x = e^(-∫2dt/t) [∫1e^(∫2dt/t)dt + C1]
= (1/t^2) (∫t^2dt + C1) = (1/t^2) (t^3/3 + C1)
= t/3 + C1/t^2, x(1) = 1/3 代入得 C1 = 0
x = t/3。
dy/dt = t/3 + y - 1 + 2/3,
dy/dt - y = (t-1)/3
y = e^(∫dt) [(1/3)∫(t-1)e^(-∫dt)dt + C2]
= e^t [(1/3)∫(t-1)e^(-t)dt + C2]
= e^t [-(1/3)∫(t-1)de^(-t) + C2]
= e^t [-(1/3)(t-1)e^(-t) + (1/3)∫e^(-t)dt + C2]
= e^t [-(1/3)(t-1)e^(-t) - (1/3)e^(-t) + C2]
= e^t [-(1/3)te^(-t) + C2] = -t/3 + C2e^t
y(1) = -1/3 代入得 C2 = 0, y = -t/3
x = e^(-∫2dt/t) [∫1e^(∫2dt/t)dt + C1]
= (1/t^2) (∫t^2dt + C1) = (1/t^2) (t^3/3 + C1)
= t/3 + C1/t^2, x(1) = 1/3 代入得 C1 = 0
x = t/3。
dy/dt = t/3 + y - 1 + 2/3,
dy/dt - y = (t-1)/3
y = e^(∫dt) [(1/3)∫(t-1)e^(-∫dt)dt + C2]
= e^t [(1/3)∫(t-1)e^(-t)dt + C2]
= e^t [-(1/3)∫(t-1)de^(-t) + C2]
= e^t [-(1/3)(t-1)e^(-t) + (1/3)∫e^(-t)dt + C2]
= e^t [-(1/3)(t-1)e^(-t) - (1/3)e^(-t) + C2]
= e^t [-(1/3)te^(-t) + C2] = -t/3 + C2e^t
y(1) = -1/3 代入得 C2 = 0, y = -t/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询