几何学有哪三大难题?

 我来答
广西师范大学出版社
2019-08-01 · 一切为了人与书的相遇。
广西师范大学出版社
向TA提问
展开全部

第一,化圆为方。在古希腊的时候有一个学者叫做安拉克萨哥拉,有一次,他提出太阳是一个巨大的火球。从现在看来,它绝对符合客观事实,但在当时,人们都相信神话中的说法,太阳是神灵阿巴罗的化身。于是安拉克萨哥拉被判定为亵渎神灵,判处死刑,被投到了牢狱中。

在等待执行的日子里,他依然在思考着关于宇宙和万物的问题,当然也包括数学问题。一天晚上,他看到圆圆的月亮,透过正方形的铁窗照进牢房,他心中一动,想:如果已知一个圆的面积,那么,怎样做出一个方来,才能使它的面积恰好等于这个圆的面积呢?这个问题看似简单,却难住了安拉克萨哥拉。在古希腊,对作图工具进行了限制,只允许使用直尺和圆规

安拉克萨哥拉一直在思考这个问题,甚至忘了自己是还是一个待处决的犯人。到了后来,受到好朋友伯利克里(当时杰出的政治家)的营救,脱离了牢狱之苦。然而这个问题,他自己没有能够解决,整个古希腊的数学家也没有能解决,成为历史上有名的三大几何难题之一。在之后的两千多年里,也有无数的数学对此做了论证,可始终没有得到答案。

第二,立方倍积。此问题也是几何三大难题中的一个。相传,在古希腊的有一个名为第罗斯的小岛有一年发生了瘟疫,岛上的居民到神庙去祈求宙斯神,询问该如何免除灾难?许多天过去了,巫师终于传达了神灵的旨意,原来是宙斯认为人们对他不够虔诚,他的祭坛太小了。要想免除瘟疫,必须做一个体积是这个祭坛两倍的新祭坛才行,而且不许改变立方体的形状。于是人们赶紧量好尺寸,把祭坛的长、宽、高都增加了一倍,第二天,把它奉献在了宙斯神的面前。不料,瘟疫非但没有停止,反而更加流行了。第罗斯岛的人民惊慌失措了,再次向宙斯神祈求。巫师再次传达了宙斯的旨意。原来新祭坛的体积不是原来祭坛的两倍,而是八倍,宙斯认为,第罗斯人抗拒了他的意志,因此更加发怒了。当然这只是个传说,但这个问题至今为止都没能解答出来确是事实。

其问题就是:仅仅用圆规和没有刻度的直尺来做一个立方体,使得这个立方体是已知原来的立方体体积的2倍。由于至今没有人解答,所以它成为了几何学的第二大问题。

第三,三等分角。这个问题也有一个传说。据说,在公元前4世纪的时候埃及的亚历山大城是一座著名的繁荣都城。在城的近郊有一座圆形的别墅,里面住着一位公主。圆形别墅的中间有一条河,公主居住的屋子正好建在圆心处。别墅的南北墙各开了一个门,河上建有一座桥。桥的位置和北门、南门恰好在一条直线上。国王每天赐给公主的物品,从北门送进,先放到位于南门的仓库,然后公主再派人从南门取回居室。从北门到公主的屋子,和从北门到桥,两段路恰好是一样长。公主还有一个妹妹小公主,国王也要为她修建一座别墅。而小公主提出,自己的别墅也要修得和姐姐的一模一样。小公主的别墅很快动工了。可是工匠们把南门建好后,要确定桥和北门的位置的时候,却发现了一个问题:怎样才能使北门到居室、北门到桥的距离一样远呢?最终工匠们发现,要想要相等的距离,就必需先要解决三等分的这个问题,只要问题可以解决,就能确定桥和北门的位置。

于是工匠们尝试用直尺和圆规作图法定出桥的位置,但过了很久,都没有得到解决,无奈之下,他们只好去请教当时最著名的数学家阿基米德。阿基米德看到这个问题,想了很久。他在直尺上做上了一点固定的标记,便轻松地解决了这一问题。大家都非常佩服他。不过阿基米德却说,这个问题没有被真正解决。因为一旦在直尺上作了标记,等于就是为它做了刻度,这在尺规作图法中是不允许的。于是这个问题在两千年来一直困扰着无数的数学家,直到一百多年前,德国数学家克莱因做出了一个无可置疑的证明:只用直尺和圆规,是不可能解决这三个难题的。也就是说,这个问题到目前为止都还没有得到真正的解决。

老农新验家a
高粉答主

2019-08-01 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1万
采纳率:86%
帮助的人:440万
展开全部
三大几何难题是指:(1)倍立方体:即作一立方体,是该立方体的体积为给定立方体的两倍;(2)但等分角:即对人员给定的一个角,作其三等分角;(3)化园为方:即作一个正方形,使其面积与一给定的圆相等
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式