什么是单位电荷?
说一个目标在离我们137亿光年之外当然很准确,但我们能真正地去理解宇宙的这种尺度吗?我们很容易感受例如从伦敦到纽约的距离,甚至从地球到月球的距离(约38万千米),这几乎是10倍于地球上的环境。有很多人在他们的一生中曾经乘飞机飞行过比这还长的距离,事实上有些航空公司会给予那些乘坐航班累计超过160万千米的乘客以某种特权。但你如何去想象1.5亿千米--从地球到太阳的距离?当我们考虑最近的恒星,离我们4.2光年(约40万亿千米)时,这个距离是很难想象的。而星系更遥远得多。银河系最近的邻居仙女座星系距离我们有200万光年之远。
在尺度的另一个极端,想象一个原子的大小同样地困难,任何普通的显微镜都无法看到单独的原子。有这样一种说法:从量级上看,人正处于从原子到恒星的尺度范围的中间。有趣的是,这也正是物理规律最为复杂的地方。在原子世界,我们应用量子物理学;在宇宙尺度,应用相对论。在这两个极端之间,我们对如何调和这些理论的困惑暴露无遗。牛津科学家罗杰·彭罗斯坚定地写下了他的信念:我们对基本物理原理所缺失的理解力,也是我们对人类意识所缺失的理解力。当我们思考所谓的人择原理--归纳起来就是宇宙的演化必然保证我们能够存在并认识它--时,这个观点尤为重要。
另一个有用的问题是,宇宙中有多少原子?一种估计给出的总数高达1079个原子,即1后面跟着79个0。
传统上我们把原子看成由三类比较基本的粒子组成:质子(带单位正电荷),中子(不带电)和质量小得多的电子(带单位负电荷)。顺带说一下,在原子层次精确定义什么是电荷远非那么简单。可以把电荷看作是粒子的属性之一,就像大小和质量一样。电荷总是以固定的粒度出现,我们称之为单位电荷。
2023-06-12 广告