求二阶导数?
3个回答
展开全部
复合函数求导,也是隐含数求导,对方程两边同时对X求导,具体过程如下图所示:
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
b^2.x^2+a^2.y^2 =a^2.b^2
2b^2.x +2a^2.y.y' =0
y' = -(b^2/a^2)(x/y)
y''
= -(b^2/a^2) [(y-xy')/y^2]
=-(b^2/a^2) [ (y + x(b^2/a^2) (x/y) )/y^2]
=-b^2 . [ a^2.y^2 + b^2.x^2] /y^2
(2)
y=1+xe^y
y' = (1+xy').e^y
(1-xe^y) y' = e^y
y' = e^y/(1-xe^y)
y''
=[(1-xe^y).e^y .y' + e^y .(1+xy' ).e^y ] /(1-xe^y)^2
= [ e^(2y) . ( 2+ xy') ] /(1-xe^y)^2
=[ e^(2y) . ( 2+ xe^y/(1-xe^y)) ] /(1-xe^y)^2
=[ (1-xe^y).e^(2y) . ( 2+ xe^y) ] /(1-xe^y)^3
b^2.x^2+a^2.y^2 =a^2.b^2
2b^2.x +2a^2.y.y' =0
y' = -(b^2/a^2)(x/y)
y''
= -(b^2/a^2) [(y-xy')/y^2]
=-(b^2/a^2) [ (y + x(b^2/a^2) (x/y) )/y^2]
=-b^2 . [ a^2.y^2 + b^2.x^2] /y^2
(2)
y=1+xe^y
y' = (1+xy').e^y
(1-xe^y) y' = e^y
y' = e^y/(1-xe^y)
y''
=[(1-xe^y).e^y .y' + e^y .(1+xy' ).e^y ] /(1-xe^y)^2
= [ e^(2y) . ( 2+ xy') ] /(1-xe^y)^2
=[ e^(2y) . ( 2+ xe^y/(1-xe^y)) ] /(1-xe^y)^2
=[ (1-xe^y).e^(2y) . ( 2+ xe^y) ] /(1-xe^y)^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询