3个回答
展开全部
an
=n^2
=n(n+1) -n
=(1/3)[n(n+1)(n+2) - (n-1)n(n+1)] - (1/2)[ n(n+1) -(n-1)n]
Sn
= a1+a2+...+an
=(1/3)n(n+1)(n+2) - (1/2)n(n+1)
=(1/6)n(n+1) [ 2(n+2) - 3]
=(1/6)n(n+1)(2n+1)
1^2-2^2+3^2-4^2+....+99^2 -100^2
=(1^2+2^2+....+100^2) -2( 2^2+4^2+...+100^2)
=(1^2+2^2+....+100^2) -8( 1^2+2^2+...+50^2)
=S100 -8S50
=(1/6)(100)(101)(201) -(8/6)(50)(51)(101)
=-5050
=n^2
=n(n+1) -n
=(1/3)[n(n+1)(n+2) - (n-1)n(n+1)] - (1/2)[ n(n+1) -(n-1)n]
Sn
= a1+a2+...+an
=(1/3)n(n+1)(n+2) - (1/2)n(n+1)
=(1/6)n(n+1) [ 2(n+2) - 3]
=(1/6)n(n+1)(2n+1)
1^2-2^2+3^2-4^2+....+99^2 -100^2
=(1^2+2^2+....+100^2) -2( 2^2+4^2+...+100^2)
=(1^2+2^2+....+100^2) -8( 1^2+2^2+...+50^2)
=S100 -8S50
=(1/6)(100)(101)(201) -(8/6)(50)(51)(101)
=-5050
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询