求有理函数的不定积分
-x^2 -2
=-(x^2+x+1) +x -1
=-(x^2+x+1) +(1/2)(2x+1) - 3/2
∫ (-x^2-2)/(x^2+x+1)^2 dx
=-∫ dx/(x^2+x+1) +(1/2)∫ (2x+1)/(x^2+x+1)^2 dx -(3/2)∫ dx/(x^2+x+1)^2
=-(1/2)[1/(x^2+x+1)] -∫ dx/(x^2+x+1) -(3/2)∫ dx/(x^2+x+1)^2
=-(1/2)[1/(x^2+x+1)] -(2√3/3)arctan[(2x+1)/√3]
-(2√3/3) [arctan[(2x+1)/√3]+ (√3/2)(2x+1)/(x^2+x+1) ] +C
consider
x^2+x+1 = (x+1/2)^2 +3/4
let
x+1/2 =(√3/2)tanu
dx=(√3/2)(secu)^2 du
∫ dx/(x^2+x+1)
=∫ (√3/2)(secu)^2 du/ [(3/4)(secu)^2]
=(2√3/3)∫ du
=(2√3/3)u + C'
=(2√3/3)arctan[(2x+1)/√3] + C'
∫ dx/(x^2+x+1)^2
=∫ (√3/2)(secu)^2 du/[ (9/16)(secu)^4 ]
=(8√3/9) ∫ (cosu)^2 du
=(4√3/9) ∫ (1+cos2u) du
=(4√3/9) [u+(1/2)sin2u] +C''
=(4√3/9) [arctan[(2x+1)/√3]+ (√3/2)(2x+1)/(x^2+x+1) ] +C''