求不定积分∫[(2x+1)/(x*x-2x+2)]dx?
1个回答
展开全部
解:原式=∫[(2x-2+3)/(x^2-2x+2)]dx
=∫[(2x-2)/(x^2-2x+2)]dx+∫[3/(x^2-2x+2)]dx
=∫[1/(x^2-2x+2)]d(x^2-2x+2)+3∫{1/[(x-1)^2+1]}d(x-1)
=ln(x^2-2x+2)+3arctan(x-1)+C
楼主所说的∫[(2x-2)/(x^2-2x+2)]dx
到∫[1/(x^2-2x+2)]d(x^2-2x+2)
其实就是典型的凑微分方法
因为(2x-2)dx=d(x^2-2x)=d(x^2-2x+2)
这种很明显要用凑微分的方法嘛
=∫[(2x-2)/(x^2-2x+2)]dx+∫[3/(x^2-2x+2)]dx
=∫[1/(x^2-2x+2)]d(x^2-2x+2)+3∫{1/[(x-1)^2+1]}d(x-1)
=ln(x^2-2x+2)+3arctan(x-1)+C
楼主所说的∫[(2x-2)/(x^2-2x+2)]dx
到∫[1/(x^2-2x+2)]d(x^2-2x+2)
其实就是典型的凑微分方法
因为(2x-2)dx=d(x^2-2x)=d(x^2-2x+2)
这种很明显要用凑微分的方法嘛
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询