级数1/2n+1的敛散性

 我来答
我爱学习112
高粉答主

2021-07-28 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:164万
展开全部

调和级数发散。

可和法通常保持收敛级数的收敛值,而对某些发散级数,这种可和法和能额外定义出相应级数的和。

例如切萨罗可和法将格兰迪级数可和到1/2。大部分可和法与相应幂级数的解析延拓相关,每个适当的可和法试图描述的是序列趋于无穷时的平均表现,这种意义下也可以理解为无穷序列的均值。

收敛级数

收敛级数映射到它的和的函数是线性的,从而根据哈恩-巴拿赫定理可以推出,这个函数能扩张成可和任意部分和有界的级数的可和法,这个事实一般并不怎么有用,因为这样的扩张许多都是互不相容的,并且也由于这种算子的存在性证明诉诸于选择公理或它的等价形式,例如佐恩引理,所以它们还都是非构造的。

发散级数这一分支,作为分析学的领域,本质上关心的是明确而且自然的技巧,例如阿贝尔可和法、切萨罗可和法、波莱尔可和法以及相关对象。维纳陶伯型定理的出现标志着这一分支步入了新的阶段,它引出了傅里叶分析中巴拿赫代数与可和法间出乎意料的联系。

一颗小石头haha
2019-09-12 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.3万
采纳率:33%
帮助的人:1151万
展开全部
∑n(2n+1)分之1小于∑n^2分之1,两者都是正项级数,∑n^2分之1由cauchy收敛准则显然收敛,所以由正项级数的比较判别法可知∑n(2n+1)分之1必然收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式