
幂函数与指数函数的区别和联系?
2个回答
展开全部
1.指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1)
性质比较单一,当a>1时,函数是递增函数,且y>0;
当0<a<1时,函数是递减函数,且y>0.
2.幂函数:自变量x在底数的位置上,y=x^a(a不等于1).
a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
高中数学里面,主要要掌握a=-1、2、3、1/2时的图像即可。其中当a=2时,函数是过原点的二次函数。其他a值的图像可自己通过描点法画下并了解下基本图像的走向即可。
3.y=8^(-0.7)是一个具体数值,并不是函数,如果要和指数函数或者幂函数联系起来也是可以的。首先你可以将其看成:指数函数y=8^x(a=8),当x=-0.7时,y的值;或者将其看成:幂函数y=x^(-0.7)(a=-0.7),当x=8时,y的值。
性质比较单一,当a>1时,函数是递增函数,且y>0;
当0<a<1时,函数是递减函数,且y>0.
2.幂函数:自变量x在底数的位置上,y=x^a(a不等于1).
a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
高中数学里面,主要要掌握a=-1、2、3、1/2时的图像即可。其中当a=2时,函数是过原点的二次函数。其他a值的图像可自己通过描点法画下并了解下基本图像的走向即可。
3.y=8^(-0.7)是一个具体数值,并不是函数,如果要和指数函数或者幂函数联系起来也是可以的。首先你可以将其看成:指数函数y=8^x(a=8),当x=-0.7时,y的值;或者将其看成:幂函数y=x^(-0.7)(a=-0.7),当x=8时,y的值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询