大学高数中用到的所以三角函数。。。。。。

 我来答
子车景明路媪
2020-03-27 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:31%
帮助的人:617万
展开全部
同角三角函数的基本关系
倒数关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin²
α+cos²
α=1
tan
α
*cot
α=1
一个特殊公式
(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina+sinθ)=2
sin[(θ+a)/2]
cos[(a-θ)/2]
*2
cos[(θ+a)/2]
sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
锐角三角函数公式
正弦:
sin
α=∠α的对边/∠α
的斜边
余弦:cos
α=∠α的邻边/∠α的斜边
正切:tan
α=∠α的对边/∠α的邻边
余切:cot
α=∠α的邻边/∠α的对边
二倍角公式
正弦
sin2A=2sinA·cosA
余弦
1.Cos2a=Cos^2(a)-Sin^2(a)
=2Cos^2(a)-1
=1-2Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
正切
tan2A=(2tanA)/(1-tan^2(A))
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
sinθ+sinφ
=
2
sin[(θ+φ)/2]
cos[(θ-φ)/2]
sinθ-sinφ
=
2
cos[(θ+φ)/2]
sin[(θ-φ)/2]
cosθ+cosφ
=
2
cos[(θ+φ)/2]
cos[(θ-φ)/2]
cosθ-cosφ
=
-2
sin[(θ+φ)/2]
sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ
-cosαsinβ
积化和差
sinαsinβ
=
[cos(α-β)-cos(α+β)]
/2
cosαcosβ
=
[cos(α+β)+cos(α-β)]/2
sinαcosβ
=
[sin(α+β)+sin(α-β)]/2
cosαsinβ
=
[sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α)
=
-sinα
cos(-α)
=
cosα
tan
(-α)=-tanα
sin(π/2-α)
=
cosα
cos(π/2-α)
=
sinα
sin(π/2+α)
=
cosα
cos(π/2+α)
=
-sinα
sin(π-α)
=
sinα
cos(π-α)
=
-cosα
sin(π+α)
=
-sinα
cos(π+α)
=
-cosα
tanA=
sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+(tan(α/2))²]
cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]
tanα=2tan(α/2)/[1-(tan(α/2))²]
上海桦明教育科技
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加... 点击进入详情页
本回答由上海桦明教育科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式