如图,直线AB‖与CD,直线EF分别交AB、CD于E,F两点,EM,FN分别平分∠BEF,∠CFE(1)求

 我来答
娱乐剧烁
2019-02-27 · TA获得超过3751个赞
知道大有可为答主
回答量:3048
采纳率:30%
帮助的人:191万
展开全部
(1)证明:∵AB//CD
∴∠BEF=∠CFE
又∠FEM=1/2∠BEF
∠NFE=1/2∠CFE
∴∠FEM=∠NFE
所以EM//FN
(2)解:∵AB//CD
∴∠BEF+∠DFE=180°
又∠GEF=1/2∠BEF
∠EFG=1/2∠DFE
∴∠GEF+∠EFG=(1/2∠BEF+1/2∠DFE)
=1/2(∠BEF+∠DFE)
=1/2*180°
=90°
(3)∠H=90°-1/2∠G
证明:作HP//AB
又AB//CD
∴HP//AB//CD
则∠EHP=∠BEH
∠PHF=∠HFD
由∴∠GEF+∠EFG=90°知
∠BEG+∠GFD=90°
∴∠EHF=∠EHP+∠FHP
=∠BEH+∠HFD
=1/2∠BEG+1/2∠GFD
=1/2(∠BEG+∠GFD)
=1/2*90°
=45°
即∠H=1/2∠G
所以,∠Q=1/4∠G
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式