已知:抛物线C1:y=x²-(m+2)x+1/2m²+2与C2:y=x²+2mx+n具有下列特征:
1个回答
展开全部
已知:抛物线C1:y1=x²-(m+2)x+1/2m²+2与C2:y2=x²+2mx+n具有下列特征:
①都与X轴有交点;②与Y轴相交于同一点
(1)求m、n的值
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
显然两条抛物线均开口向上;
对于C1:Δ1=(m+2)²-4(1/2m²+2)=-(m-2)²≤0,但C1与x轴有交点,∴Δ1≥0,
∴-(m-2)²=0,m=2■,∴C1:y1=x²-4x+4=(x-2)²,它与y轴的交点为(0,4);
对于C2:m=2代入,方程化为y2=x²+4x+n,又它与y轴的交点亦为(0,4),
代入求得n=4■,∴C2:y2=(x+2)²;因为C1、C2与y轴的交点为(0,4),∴
当x<0时,y1>y2
■;
比较两条抛物线的方程可知,他们的焦参数p均为1/2,所以形状相同,
又C1、C2的顶点分别为(2,0),(-2,0),∴C1向x轴负方向移动4个单位即得到C2■
①都与X轴有交点;②与Y轴相交于同一点
(1)求m、n的值
(2)试写出x为何值时,y1>y2
(3)试描述抛物线C1通过怎样的变换得到抛物线C2
显然两条抛物线均开口向上;
对于C1:Δ1=(m+2)²-4(1/2m²+2)=-(m-2)²≤0,但C1与x轴有交点,∴Δ1≥0,
∴-(m-2)²=0,m=2■,∴C1:y1=x²-4x+4=(x-2)²,它与y轴的交点为(0,4);
对于C2:m=2代入,方程化为y2=x²+4x+n,又它与y轴的交点亦为(0,4),
代入求得n=4■,∴C2:y2=(x+2)²;因为C1、C2与y轴的交点为(0,4),∴
当x<0时,y1>y2
■;
比较两条抛物线的方程可知,他们的焦参数p均为1/2,所以形状相同,
又C1、C2的顶点分别为(2,0),(-2,0),∴C1向x轴负方向移动4个单位即得到C2■
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询