高一数学不等式证明题【在线等】
证明:2(√(n+1)-1)<1+1/√2+1/√3+···+1/√n<2√nP个S:√(n+1)为根号下的(n+1),1/√2为1除以根号2...
证明:2(√(n+1)-1)<1+1/√2+1/√3+···+1/√n<2√n
P个S:√(n+1)为根号下的(n+1),1/√2为1除以根号2 展开
P个S:√(n+1)为根号下的(n+1),1/√2为1除以根号2 展开
展开全部
设Sn=2(√(n+1)-1)为数列{an}的前n项和,
Tn=2√n为数列{bn}的前项和
那么a1=2(√2-1)<1<b1=2
当n>1时,an=Sn-S(n-1)=2(√(n+1)-√n)=2/(√(n+1)+√n)<2/(√n+√n)=1/√n
bn=Tn-T(n-1)=2(√n-√(n-1)=2(√n+√n-1)>2(√n+√n)=1/√n
所以an<1/√n<bn
所以
a1<1/√1<b1
a2<1/√2<b2
a3<1/√3<b3
a4<1/√4<b4
》》》》》》
an<1√n<bn
以上n个不等式相加得
2(√(n+1)-1)<1+1/√2+1/√3+···+1/√n <2√n
Tn=2√n为数列{bn}的前项和
那么a1=2(√2-1)<1<b1=2
当n>1时,an=Sn-S(n-1)=2(√(n+1)-√n)=2/(√(n+1)+√n)<2/(√n+√n)=1/√n
bn=Tn-T(n-1)=2(√n-√(n-1)=2(√n+√n-1)>2(√n+√n)=1/√n
所以an<1/√n<bn
所以
a1<1/√1<b1
a2<1/√2<b2
a3<1/√3<b3
a4<1/√4<b4
》》》》》》
an<1√n<bn
以上n个不等式相加得
2(√(n+1)-1)<1+1/√2+1/√3+···+1/√n <2√n
展开全部
孩啊,这是用数学归纳法证的,高三才学。你可以看看高三课本,这种方法也不是很难。自己试试吧
这种复杂证明都是用数学归纳法的
这种复杂证明都是用数学归纳法的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
遇到这种题就想法把通项拆开1/√n>2/(√n+√n+1),把式子拆成两项相减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询