怎么求绝对值的最小值

 我来答
喻素芹穆妍
2020-05-03 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:28%
帮助的人:665万
展开全部
当x=2时,原式=|x+1|+|x-2|+|x-3|可取到最小值是4.理由如下:|x+1|+|x-2|+|x-3|的集合意义是数轴上的某点到-1,2,3这三个点的距离的和达到最小.显然到-1,3这两个点的距离和最小是当x取-1到3之间的任何实数时(包括-1,3这两个点),最小值是4.另外还要再加到2这个点的距离,显然当x取2时,达到最小值,最小值是4.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式