已知函数y=fx x∈(-1,1)及既是奇函数又是减函数
1个回答
展开全部
证明:
因为是奇函数,所以有
[f(x1)+f(x2)]/(x1+x2)=[f(x1)-f(-x2)]/[x1-(-x2)]
此为求函数图像的斜率的表达式
因为是减函数,所以斜率小于零
所以两个因式相乘也必然小于零
当x1与x2绝对值相等时,x1加x2等于零
综上,[f(x1)+f(x2)](x1+x2)≤0
因为是奇函数,所以有
[f(x1)+f(x2)]/(x1+x2)=[f(x1)-f(-x2)]/[x1-(-x2)]
此为求函数图像的斜率的表达式
因为是减函数,所以斜率小于零
所以两个因式相乘也必然小于零
当x1与x2绝对值相等时,x1加x2等于零
综上,[f(x1)+f(x2)](x1+x2)≤0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一套轻量级、模块化且易于使用的开源UI组件库,由YOOtheme团队开发。它提供了丰富的界面元素,包括按钮、表单、表格、对话框、滑块、下拉菜单、选项卡等等,适用于各种类型的网站和应用程序。UIkit还支持响应式设计,可以根据不同...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询