已知a,b,c属于(0,+♾️),且a+b+1/a+1/b=5,则a+b的最大值或最小值是什么
急,利用基本不等式证明不等式1题:已知a>0,b>0且a+b=1,求证1/a+1/b>=42题:已知a,b,c属于(0,+无穷)且a+b+c=1,求证(1/a-1)(1/...
急,
利用基本不等式证明不等式
1题:已知a>0,b>0且a+b=1,求证1/a+1/b>=4
2题:已知a,b,c属于(0,+无穷)且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)>=8 展开
利用基本不等式证明不等式
1题:已知a>0,b>0且a+b=1,求证1/a+1/b>=4
2题:已知a,b,c属于(0,+无穷)且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)>=8 展开
1个回答
展开全部
1,1=a+b≥2√(ab),所以ab最大值为1/4
1/a+1/b≥2√(1/ab)=4(大于它的最大首搏答值者慧)
2,a+b+c=1,a,b,c,属于正实数,求证(1/a-1)(1/b-1)(1/c-1)≥8
证:已知a+b+c=1,a,b,c,属于正实数,
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√银贺(ab)/c
故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8
∴(1/a-1)*(1/b-1)*(1/c-1)≥8
1/a+1/b≥2√(1/ab)=4(大于它的最大首搏答值者慧)
2,a+b+c=1,a,b,c,属于正实数,求证(1/a-1)(1/b-1)(1/c-1)≥8
证:已知a+b+c=1,a,b,c,属于正实数,
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√银贺(ab)/c
故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8
∴(1/a-1)*(1/b-1)*(1/c-1)≥8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询