已知cos(x-3π/4)-sin(x-5π/4)
(1)求f(x)的最小正周期和单调递减区间(2)若f(θ)=8/5,求(sin2θ-2sin²θ)/(1-tanθ)的值...
(1)求f(x)的最小正周期和单调递减区间 (2)若f(θ)=8/5,求(sin2θ-2sin²θ)/(1-tanθ)的值
展开
1个回答
展开全部
解:
f(x)=cos(x-3/4π)-sin(x-5/4π)
=cosxcos3π/4+sinxsin3π/4-(sinxcos5π/4-cosxsin5π/4)
=-√2/2cosx+√2/2sinx-(-√2/2sinx+√2/2cosx)
=√2sinx-√2cosx
=2sin(x-π/4)
(1)最小正周期T=2π/1=2π
令π/2+2kπ≤x-π/4≤3π/2+2kπ
(k∈Z)
3π/4+2kπ≤x≤7π/4+2kπ
单调递减区间为[3π/4+2kπ,7π/4+2kπ
]
(k∈Z)。
(2)
f(θ)=√2sinθ-√2cosθ=8/5
sinθ-cosθ=4√2/5
两边平方得
1-2sinθcosθ=32/25
2sinθcosθ=-7/25
于是
(sin2θ-2sin²θ)/(1-tanθ)
=(2sinθcosθ-2sin²θ)/(1-sinθ/cosθ)
=2sinθ(cosθ-sinθ)/[(cosθ-sinθ)/cosθ]
=2sinθcosθ
=-7/25
f(x)=cos(x-3/4π)-sin(x-5/4π)
=cosxcos3π/4+sinxsin3π/4-(sinxcos5π/4-cosxsin5π/4)
=-√2/2cosx+√2/2sinx-(-√2/2sinx+√2/2cosx)
=√2sinx-√2cosx
=2sin(x-π/4)
(1)最小正周期T=2π/1=2π
令π/2+2kπ≤x-π/4≤3π/2+2kπ
(k∈Z)
3π/4+2kπ≤x≤7π/4+2kπ
单调递减区间为[3π/4+2kπ,7π/4+2kπ
]
(k∈Z)。
(2)
f(θ)=√2sinθ-√2cosθ=8/5
sinθ-cosθ=4√2/5
两边平方得
1-2sinθcosθ=32/25
2sinθcosθ=-7/25
于是
(sin2θ-2sin²θ)/(1-tanθ)
=(2sinθcosθ-2sin²θ)/(1-sinθ/cosθ)
=2sinθ(cosθ-sinθ)/[(cosθ-sinθ)/cosθ]
=2sinθcosθ
=-7/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询