已知函数f(x)=xLnx求f(x)的最小值

若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围... 若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围 展开
 我来答
藤精香晓旋
2019-06-16 · TA获得超过1199个赞
知道小有建树答主
回答量:1752
采纳率:100%
帮助的人:8.1万
展开全部
f(x)=xlnx
则:
f'(x)=lnx+1,其中x>0
则:当0<x<1/e时,f'(x)<0;当x>1/e时,f'(x)>0
则:f(x)的最小值是f(1/e)=-1/e
当x≥1时,f(x)≥ax-1,则:
a≤[f(x)+1]/(x)
设:F(x)=[f(x)+1]/(x)
则:
F'(x)=[x(lnx+1)-xlnx-1]/(x²)
F'(x)=[(x-1)(lnx+1)]/(x²)
则:F(x)在(0,1/e)上递增,在(1/e,1)上递减,在(1,+∞)上递增
则函数F(x)在x≥1时的最小值是F(1)=]f(1)+1]=1
则:a≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
刁淳桐冬雁
2020-08-09 · TA获得超过1071个赞
知道小有建树答主
回答量:1721
采纳率:87%
帮助的人:8.1万
展开全部
解:
(1)对函数f(x)=xlnx
求导
得:
f'(x)=lnx+1
令lnx+1=0,x=1/e
当x>1/e时,f'(x)>0
当0<x<1/e时,f'(x)<0
所以f(x)先减后增,最小值为f(1/e)=-1/e
(2)若对所有x≥1都有f(x)≥ax-1
则a≤[f(x)+1]/x,
则a≤[f(x)+1]/x的最小值
以下求[f(x)+1]/x的最小值
令g(x)=[f(x)+1]/x=(xlnx+1)/x=lnx+1/x
求导得g'(x)=1/x-1/x^2=(x-1)/x^2
令(x-1)/x^2=0,则x=1
当x>1时,g'(x)>0,即g(x)在x≥1时单调递增,最小值为g(1)=1
所以a≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
圣令诺嘉玉
2019-08-03 · TA获得超过1104个赞
知道小有建树答主
回答量:1751
采纳率:100%
帮助的人:8.1万
展开全部
求导可得
f'(x)=lnx+1,(x>0)
令f'(x)>0可得x>1/e
令f'(x)<0可得0<x<1/e
∴当x=1/e时f(x)取得最小值-1/e
若对所有x≥1都有f(x)≥ax-1则a≤[f(x)+1]/x
则a≤[f(x)+1]/x的最小值
以下求[f(x)+1]/x的最小值
令g(x)=[f(x)+1]/x=(xlnx+1)/x=lnx+1/x
求导得g'(x)=1/x-1/x²=(x-1)/x²
令(x-1)/x²=0,则x=1
当x>1时g'(x)>0即g(x)在x≥1时单调递增,最小值为g(1)=1
所以a≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
尔芝纳喇娇洁
2020-07-09 · TA获得超过1083个赞
知道小有建树答主
回答量:1686
采纳率:100%
帮助的人:12.1万
展开全部
解:求导f‘(x)=lnx+1
令f'(x)=0
得x=1/e
∴f(x)在(0,1/e)上单调递减,
在(1/e,+无穷)上单点递增
所以f(x)的最小值f(1/e)=-1/e
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
斋子镜琼怡
2019-06-08 · TA获得超过1105个赞
知道答主
回答量:1681
采纳率:100%
帮助的人:7.9万
展开全部
f'(x)=lnx+1
令f'(x)=0得lnx=-1,x=1/e
∴0<x<1/e,f'(x)<0,f(x0递减
x>1/e,f'(x)>0,f(x0递增
∴f(x)min=f(1/e)=-1/e
(2)
有x≥1都有f(x)≥ax-1
即xlnx≥ax-1
即a≤1/x+lnx
设g(x)=1/x+lnx
那么需a≤g(x)min即可
g'(x)=-1/x²+1/x=(x-1)/x²
∵x≥1∴g'(x)≥0恒成立
∴g(x)为增函数
∴g(x)min=g(1)=1
∴a≤1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式