∫上限+无穷下限1 1/x²dx
一道高数题:反常积分∫(上限正无穷,下限1)1/(x^2*(1+x))dx的值为()A.无穷B.0C.ln2D.1-ln2...
一道高数题:反常积分∫(上限正无穷,下限1)1/(x^2*(1+x))dx的值为() A.无穷 B.0 C.ln2 D.1-ln2
展开
1个回答
展开全部
问题:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx =
方法1:
1 / [ x²(1+x)]
= [1 - x² +x²] / [ x²(1+x)]
= [1 - x² ] / [ x²(1+x)] + x² / [ x²(1+x)]
= (1 - x) / x² + 1 / (1+x)
= [1 / x² - 1 / x + 1 / (1+x) ]
所以:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx
= ∫{x = 1 →∞} [1 / x² - 1 / x + 1 / (1+x) ] dx
= - 1 / x + Ln[(1+x) / x] ----------- x = 1 →∞
= 1 - Ln2 --------------- 选 D
方法2:设 x = 1 / t {x = 1 →∞} →→→→→ {t = 1 →0}
原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx
= ∫{t = 1 →0} - t / (1+t) dt
= ∫{t = 0 →1} t / (1+t) dt ----------- t / (1+t) = 1 - 1 / (1 + t)
= t - Ln(1+t) t = 0 →1
= 1 - Ln2
方法1:
1 / [ x²(1+x)]
= [1 - x² +x²] / [ x²(1+x)]
= [1 - x² ] / [ x²(1+x)] + x² / [ x²(1+x)]
= (1 - x) / x² + 1 / (1+x)
= [1 / x² - 1 / x + 1 / (1+x) ]
所以:原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx
= ∫{x = 1 →∞} [1 / x² - 1 / x + 1 / (1+x) ] dx
= - 1 / x + Ln[(1+x) / x] ----------- x = 1 →∞
= 1 - Ln2 --------------- 选 D
方法2:设 x = 1 / t {x = 1 →∞} →→→→→ {t = 1 →0}
原积分 = ∫{x = 1 →∞} 1 / [ x²(1+x)] dx
= ∫{t = 1 →0} - t / (1+t) dt
= ∫{t = 0 →1} t / (1+t) dt ----------- t / (1+t) = 1 - 1 / (1 + t)
= t - Ln(1+t) t = 0 →1
= 1 - Ln2
佳达源
2024-10-28 广告
2024-10-28 广告
TPS25940AQRVCRQ1作为我们深圳市佳达源电子有限公司所关注或可能代理的一款高性能电源管理芯片,它集成了先进的保护功能与高效的电源转换能力,专为满足现代电子设备对稳定供电及安全性的高要求而设计。我们致力于为客户提供包括TPS259...
点击进入详情页
本回答由佳达源提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询