1个回答
展开全部
求由ρ=3cosθ和ρ=1+cosθ所围成的图形的面积
解:由ρ=3cosθ得x²+y²=3x;即(x-3/2)²+y²=9/4是一个圆心在(3/2,0),
半径R=3/2的园。在极点(原点)处的切线是y轴。
阴影上半部分的面积S/2=【D】∫∫ρdρdθ
=【0,π/3】∫dθ【0,1+cosθ】∫ρdρ+【π/3,π/2】∫dθ【0,3cosθ】∫ρdρ
=【0,π/3】(1/2)∫(1+cosθ)²dθ+【π/3,π/2】(9/2)∫cos²θdθ
=【0,π/3】(1/2)∫(1+2cosθ+cos²θ)dθ+【π/3,π/2】(9/4)∫(1+cos2θ)dθ
=(1/2)[θ+2sinθ+(1/2)θ+(1/4)sin2θ]【0,π/3】
+(9/4)[θ+(1/2)sin2θ]【π/3,π/2】
=(1/2)[(π/3)+√3+(π/6)+(√3/8)]+(9/4)[(π/2)-(π/3)-(√3/4)]
=(1/2)[(π/2)+9/8)(√3)]+(9/4)[(π/6)-√3/4)]
=(5/8)π-(9/16)(√3-1)
即S=(5/4)π-(9/8)(√3-1)
解:由ρ=3cosθ得x²+y²=3x;即(x-3/2)²+y²=9/4是一个圆心在(3/2,0),
半径R=3/2的园。在极点(原点)处的切线是y轴。
阴影上半部分的面积S/2=【D】∫∫ρdρdθ
=【0,π/3】∫dθ【0,1+cosθ】∫ρdρ+【π/3,π/2】∫dθ【0,3cosθ】∫ρdρ
=【0,π/3】(1/2)∫(1+cosθ)²dθ+【π/3,π/2】(9/2)∫cos²θdθ
=【0,π/3】(1/2)∫(1+2cosθ+cos²θ)dθ+【π/3,π/2】(9/4)∫(1+cos2θ)dθ
=(1/2)[θ+2sinθ+(1/2)θ+(1/4)sin2θ]【0,π/3】
+(9/4)[θ+(1/2)sin2θ]【π/3,π/2】
=(1/2)[(π/3)+√3+(π/6)+(√3/8)]+(9/4)[(π/2)-(π/3)-(√3/4)]
=(1/2)[(π/2)+9/8)(√3)]+(9/4)[(π/6)-√3/4)]
=(5/8)π-(9/16)(√3-1)
即S=(5/4)π-(9/8)(√3-1)
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询