当x趋向1时,求极限lim(1-x)tan(πx/2),

 我来答
教育小百科达人
2019-04-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:475万
展开全部

具体回答如图:

单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

扩展资料:

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小

当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。

参考资料来源:百度百科——函数极限

旷秋任婉仪
2019-01-18 · TA获得超过1006个赞
知道小有建树答主
回答量:1776
采纳率:100%
帮助的人:9.5万
展开全部
原式=lim(1-x)sin(πx/2)/cos(πx/2)
是0/0型,用洛必达法则
=lim[-sin(πx/2)+(1-x)πcos(πx/2)/2]/[-πsin(πx/2)/2]
=1/(π/2)
=2/π
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式